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ABSTRACT: Spatial patterns of tropical rainfall are strongly influenced by mountains. Although theories for precipita-
tion induced by convectively stable upslope ascent exist for the midlatitudes, these do not represent the interaction of moist
convection with orographic forcing. Here, we present a theory for convective precipitation produced by the mechanical
interaction of a tropical ridge with a basic-state horizontal wind. Deviations from this basic state are represented as the
sum of a “dry” perturbation, due to the stationary orographic gravity wave, and a “moist” perturbation that carries the con-
vective response. The moist component dynamics are subject to the weak temperature gradient approximation; they are
forced by the dry mode’s influence on lower-tropospheric moisture and temperature. Analytical solutions provide esti-
mates of the precipitation distribution, including peak precipitation, upstream extent, and rain shadow extent. The theory
can be used with several degrees of complexity depending on the technique used to compute the dry mode, which can be
drawn from linear mountain wave theory or full numerical simulations. To evaluate the theory, we use a set of convection-
permitting simulations with a flow-perpendicular ridge in a long channel. The theory makes a good prediction for the cross-
slope precipitation profile, indicating that the organization of convective rain by orography can be quantitatively understood
by considering the effect of stationary orographic gravity waves on a lower-tropospheric convective quasi-equilibrium state.
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1. Introduction

The spatial distribution of time-mean low-latitude rainfall
is set to first order by the latitude and intensity of the inter-
tropical convergence zone (ITCZ). Zonal inhomogeneities in
sea surface temperatures, a direct consequence of the pres-
ence of landmasses, modify this distribution by driving the
Walker circulation. These landmasses also act seasonally as
strong energy sources that drive monsoon circulations. On
sufficiently large length scales, one might be satisfied with this
description of the principal features and forcings of tropical
precipitation; looking in more detail, however, one sees that
orography strongly modifies these broad patterns.

Satellite-derived estimates (GPM IMERG V06B; Huffman
et al. 2019) of climatological precipitation1 for June–August
and October–December are shown in Figs. 1a and 1b, along
with a smoothed contour of 500 m surface height. Some of the
most striking deviations from the quasi-linear oceanic ITCZ
are regions of intense rainfall located in the vicinity of moun-
tains, e.g., near the Northern Andes, Western Ghats, Himala-
yas, and various ranges in the Indochinese Peninsula and
Maritime Continent. These precipitation maxima are located
in regions and seasons favorable to moist convective develop-
ment, as noted by Xie et al. (2006) for the Asian summer

monsoon and Ramesh et al. (2021) for regions experiencing
an autumn monsoon. Xie et al. (2006) note that despite their
prominence, a regional atmospheric model with 0.58 horizontal
resolution is unable to reproduce these features. This failure,
partly attributed to inadequate convective parameterization,
was confirmed in a more systematic study by Kirshbaum (2020).
It suggests that a main tool for evaluating climate, namely,
global circulation models, is ill-suited to study orographic con-
vection, despite its importance for tropical precipitation.

Kirshbaum et al. (2018) identify two ways orography gen-
erates or alters convective systems: mechanical forcing,
whereby a mountain lifts a background wind, and thermal
forcing, where surface heat fluxes from elevated terrain pro-
duce convergence. Figure 1 displays 100 m wind vectors
from the ERA5 dataset (Hersbach et al. 2020). Enhanced
precipitation is mostly focused upwind of mountain ranges
and on their windward slopes, suggesting that mechanical
forcing is the primary mechanism at play in the large-scale,
climatological sense. To further illustrate this point, we plot
cross sections of surface elevation and precipitation for sum-
mer and autumn along a latitude line spanning India, South-
east Asia, and the Philippines. We observe a clear shift of
rainfall maxima from the western slopes in summer to the
eastern slopes in autumn, consistent with the seasonal wind
reversal in these regions.

Orographic precipitation in midlatitude, convectively stable
flows has been extensively studied (for a review, see, e.g., Roe
2005). Smith and Barstad (2004, hereafter SB04) developed
an analytical theory, using linear mountain wave dynamics,
that efficiently reproduces rainfall rates and spatial organiza-
tion in such cases. It accounts for the effects of cloud latent
heating through use of a moist stability parameter. However,Corresponding author: Quentin Nicolas, qnicolas@berkeley.edu

1 This GPM product has been shown to have little bias relative
to rain gauge measurements on seasonal time scales, even over
complex terrain (Derin et al. 2019).
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because it does not permit moist convection, this theory may
not be applicable to most tropical cases.

Orographic convection has been the focus of field experiments
and numerous studies in the past two decades (Houze 2012;
Kirshbaum et al. 2018). However, most have focused on tempo-
ral synoptic scales, with little attention devoted to understanding
what sets climatological time-mean precipitation rates. Chu and
Lin (2000) and Chen and Lin (2005) studied initial value prob-
lems, where the fate of conditionally unstable flow was qualita-
tively examined as a function of moist nondimensional mountain
height and convective available potential energy (CAPE).
Miglietta and Rotunno (2009) extended their work to study the
dependence on a more exhaustive set of parameters, noting that
precipitation increased both with the ratio of mountain height to
the level of free convection and with the vertical aspect ratio of
the mountain. The ratio of advective to convective time scales
was shown to control the shape of the cross-mountain rainfall
profile, with wider mountains having their precipitation profile
shifted upstream. Subsequent studies (Miglietta and Rotunno
2012, 2014) noted the importance of vertical wind shear in pro-
ducing large rain rates in the presence of deep convection; sound-
ings with strong flow at lower levels and weak flow aloft
produced higher precipitation rates. Focusing on larger spatial
and temporal scales, Wang and Sobel (2017) simulated rainfall
over isolated tropical islands in both thermally and mechanically
forced settings. Their flat-island cases showed that surface rough-
ness gradients alone can produce substantial mechanical forcing
for precipitation, and that the transition from thermal to

mechanical forcing can cause a nonmonotonic dependence of
mean precipitation on upstream wind speed.

Few studies attempted to formulate theories for orographi-
cally forced moist convection. Kirshbaum and Smith (2009)
took inspiration from trade wind flows over Dominica to
develop an analytical model for the orographic enhancement
of precipitation from shallow convection. They used a “slice”
method separating saturated updrafts from unsaturated descend-
ing air, computing the impact of an imposed mean ascent on ver-
tical velocities. Two elements hamper application of this theory
to the time-mean effects of orography on deep convection.
First, the mean ascent is assumed be uniform in height, whereas
deep convection spans at least one vertical wavelength of an
orographic gravity wave. Second, the theory contains multiple
unconstrained parameters (e.g., updraft area fraction, an
“entrainment” parameter representing dissipative effects on
cloudy updrafts) that would vary greatly on time scales larger
than those of a single event. To the best of our knowledge,
Cannon et al. (2014) is the only analytical work focused on oro-
graphic deep convection, having developed an area-averaged
model with detailed microphysics. The precipitation rate is com-
puted levelwise by bringing parcels to their level of neutral
buoyancy, then accounting for detrainment and evaporation
due to compensating descent before applying a CAPE-dependent
weighting. The model leads to a high number of equations to be
solved, hindering physical insights, and its “bulk” nature obscures
key questions such as how far upstream precipitation is enhanced
and how long the rain shadow is.

FIG. 1. Annual-mean GPM IMERGV06B precipitation (shading), 500 m surface height level (thin brown contours),
and wind vectors 100 m above the surface averaged over (a) June–August and (b) October–December from 2014 to
2020. (c) Cross sections of surface elevation and precipitation along the thick blue line shown in (a) and (b) at 158N.
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A fruitful line of development in the theory of tropical
dynamics has been the quasi-equilibrium (QE) view of con-
vection, dating back to Arakawa and Schubert (1974) and
outlined by Emanuel et al. (1994). This view has its roots in
the observation that CAPE often varies slowly compared to
its generation mechanisms (i.e., tropospheric radiative cool-
ing, surface enthalpy fluxes, and large-scale ascent), with
CAPE anomalies consumed as convective activity responds
rapidly to any change in the generation mechanisms. An
ensemble of convective motions is thus in near statistical equi-
librium with the large-scale forcings, with convective motions
setting the vertical temperature profile, tying it directly to the
subcloud-layer moist static energy. QE theories seem most
relevant for relatively slow forcings such as the seasonal cycle,
which evolves on a time scale orders of magnitude longer
than that of the convective response. This motivates our use
of QE theory here to describe time-mean patterns of oro-
graphic precipitation, which in some regions (e.g., South
Asia) constitutes a substantial fraction of the regional total
precipitation (Xie et al. 2006), that has in turn been under-
stood using QE frameworks (e.g., Nie et al. 2010). Specifically,
we use QE theory to describe the statistical average effect of
mountains on time-mean convective precipitation, rather than
formulating a theory of eventwise convective triggering by
orographic ascent. While early QE theories employed CAPE-
based convective closures, we leverage recent developments
that incorporate observed relationships between precipitation
and lower-tropospheric temperature and humidity (Derby-
shire et al. 2004; Raymond et al. 2015; Ahmed et al. 2020).
We discuss further details and possible caveats, such as
whether Eulerian or Lagrangian time scales are relevant for
evaluating the validity of QE, later in the context of results
from our idealized model.

Here we pose two key questions: What sets the mean precipi-
tation rate of mechanically forced orographic convection? How
far upstream and downstream does orography influence tropical
precipitation? Unlike some classic QE closures that only consider
near-surface temperature and moisture anomalies, we use a con-
vective closure that is sensitive to lower-free-tropospheric anom-
alies, and accounts for the influence of stationary orographic
gravity waves on those anomalies. This links classic stationary
wave theory with modern QE closures for convection, and pro-
vides nonlinear expressions for precipitation as well as a linear-
ized theory that can be forced by the Fourier transformed
terrain. Convection-permitting simulations in a long channel are
used to test theoretical rain rates. We use the results of these sim-
ulations to evaluate the convective time scales used in the theory
and the possible influence of spatial modulations of surface evap-
oration and radiative cooling downwind of the ridge.

2. Theory

This section presents an analytical theory for the precipita-
tion over a tropical mountain in a background wind, based on
a QE convective closure. Its aim is to account for the main fea-
tures of time-mean precipitation around the ridge (peak value,
spatial extent of upstream enhancement, rain shadow length),
as a function of large-scale flow characteristics and ridge shape.

The theory is based loosely on the Quasi-Equilibrium Tropical
Circulation Model (QTCM) of Neelin and Zeng (2000), but
employs the moisture–temperature (q–T) convective parame-
terization proposed by Ahmed et al. (2020). This closure was
derived from the empirical relationship between precipitation
and lower-free-tropospheric buoyancy and parameterizes pre-
cipitation as a response to both temperature and moisture per-
turbations, with different sensitivities. The reason we chose to
use this closure instead of a more classic CAPE-based parame-
terization will be expanded upon in section 3b.

Our main hypothesis, assessed in later sections, is that
mountains alter convection by modulating lower-tropospheric
temperature and moisture. In the presence of a background
wind, an orographic gravity wave is excited that carries ther-
modynamic perturbations. Forced ascent upwind of the ridge
cools and moistens the lower free troposphere, enhancing
convection. The opposite occurs downstream where subsi-
dence prevails. In addition to these orographically induced
thermodynamic variations, we will show that the solution
depends on the convective adjustment time scales and on an
advective length scale, with the latter being the product of the
background wind speed with a time scale for relaxation to
radiative–convective equilibrium (RCE). The mountain wave
may also modify the tropospheric static stability and wind
shear, but we focus on lower-tropospheric temperature and
moisture anomalies because these have been found to exert a
strong control on deep convection (Derbyshire et al. 2004;
Raymond et al. 2015; Ahmed et al. 2020).

a. Modal decomposition

Throughout this paper, we consider a horizontally infinite
low-latitude domain with surface elevation h(x) and a uniform
and constant background horizontal wind u0. As explained in
appendix A, linearizing the dynamics allows the flow to be
described as the sum of a basic state and two perturbation modes:
a dry mode, due solely to the orographic gravity wave, and a
moist mode, that represents the moist convective part of the flow.
The dry mode only influences the moist mode as a forcing for
convective heating, while the moist mode does not influence the
dry mode. The latter assumption is not entirely justified, as we
will show in section 3c that the orographic gravity wave feels a
lower effective stability due to the presence of moist convection,
in a convection-permitting numerical model. Steady-state ther-
modynamic and moisture equations for the moist mode are

u0 · $Tm 1 vm
s0
p

5 Qc 2 R, (1a)

u0 · $qm 1 vm
q0
p

5 Qq 1 E, (1b)

where s0(p) and q0(p) are, respectively, the reference dry
static energy and moisture vertical profiles, with the zero sub-
script denoting a property of the basic state, and vm, Tm, and
qm are the pressure velocity, temperature, and moisture per-
turbations of the moist mode; Qc and Qq denote convective
heating and moistening, while R and E are radiative cooling
and surface evaporation rates. Surface sensible heat fluxes are
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generally smaller than latent heat fluxes, and are neglected for
simplicity. Here, and subsequently, temperature and moisture
are in energy units (i.e., they have, respectively, absorbed the
heat capacity of air at constant pressure cp, and the latent heat of
vaporization of water Ly). This linearized formulation neglects
horizontal variations in static stability and moisture stratification
caused by orography, which in the simulations presented in
section 3 are of order 20% downstream of the ridge (with local
increases up to 30% above the ridge).

We now perform a unimodal vertical truncation of the
moist mode. We only include a deep convective mode, with
any shallow temperature anomaly induced by the orographic
gravity wave represented by the dry mode. This treatment
likely renders our theory most appropriate for deep tropical
regions, where deep convection is observed to generate most
rainfall (Tan et al. 2013; Houze et al. 2015), in contrast with
the midlatitudes or trade wind regions (e.g., Kirshbaum and
Smith 2009). Following Sobel et al. (2001), we also employ
the weak temperature gradient (WTG) approximation for the
moist mode, which allows us to solve for that mode without
the momentum equations (remember that horizontal temper-
ature gradients induced by the orographic gravity wave are
carried by the dry mode). Using notation from Neelin and
Zeng (2000), we write vm(x, y, p) 5 v1(x, y)V1(p) and verti-
cally average (1a) and (1b), yielding

2v1Ms 5 Qc〈 〉 2 R〈 〉, (2a)

u0 · $ qm〈 〉 1 v1Mq 5 Qq
〈 〉

1 E〈 〉, (2b)

with ·〈 〉5
�ps
pt
{ · }dp=pT . Here pT 5 ps 2 pt is the tropospheric

depth, and ps and pt are, respectively, surface and tropopause pres-
sures (the tropospheric mass per unit area is pT/g 5 8000 kg m22

henceforth). The gross dry stability and gross moisture stratifi-
cation are, respectively, defined by Ms 5 〈V1s0/p〉 and
Mq 5 〈V1q0/p〉. The quantityM 5 Ms 2 Mq is known as the
gross moist stability (GMS; see, e.g., Neelin and Held 1987;
Raymond et al. 2009).

We now introduce the energy constraint 〈Qc〉 52〈Qq〉 and
employ the q–T convective closure,

Qc〈 〉 5 q′L
tq

2
T′
L

tT

( )
1

, (3)

where (·)1 5 max(·, 0). tq and tT are the moisture and tem-
perature adjustment time scales, diagnosed respectively as
approximately 11 and 3 h by Ahmed et al. (2020). q′L and T′

L

are total deviations (the sum of perturbations in both the
moist and dry modes) from the reference profiles of moisture
and temperature, with ·( )L 5

�pLb
pLt

·{ }dp= pLb 2 pLt( ) denoting
a lower-free-tropospheric average, where pLb 5 900 hPa and
pLt 5 700 hPa. Decomposing these anomalies into contribu-
tions from the moist and dry modes (subscripts m and d,
respectively, see also appendix A) gives

q′L 5 qmL 1 qdL and T′
L 5 TmL 1 TdL 5 TdL, (4)

where the last equality comes fromWTG [if =Tm 5 0, one can
add any horizontally uniform nonzero Tm(p) to the reference

profile T0(p), hence resulting in Tm 5 0]. The heating term (3)
will have two contributions: one from the dry perturbations
qdL and TdL (hereafter referred to as “the dry forcing for
convection”), and a moist convective response carried by
qmL. Because we assumed a horizontally and temporally
invariant vertical profile for qm, the quantities qmL and 〈qm〉
are proportional. Using the notation of Ahmed et al. (2020),
qmL=tq 5 qm〈 〉=t̃q, where t̃q � 0:6tq.

b. A general precipitation equation

We can now obtain an equation for precipitation, which is
related to the convective heating by P 5 pT〈Qc〉/g in units of
energy per unit area per unit time (dividing by rwLy, where rw
is the density of liquid water, yields a physical precipitation
rate, in m s21). Using (3), (4), and the definition of t̃q, we
obtain

P 5
pT
g

qm〈 〉
t̃q

1
qdL
tq

2
TdL

tT

( )
1

: (5)

We then eliminate v1 in (2a) and (2b) and use (5) to obtain
an equation for P that involves only the various imposed ther-
modynamic parameters, incident wind, and perturbations in
the dry mode:

u0 · $P 5 2
M

Mst̃q
P 2 P0( ) 1 pT

g
u0 · $ qdL

tq
2

TdL

tT

( )[ ]
H P( ),

where P05
pT
g

Ms E〈 〉 2 Mq R〈 〉
M

(6)

and H denotes the Heaviside function. We henceforth drop
the y dependence, simplifying (6) to

dP
dx

5 2
P 2 P0

Lq
1

pT
g

d
dx

qdL
tq

2
TdL

tT

( )[ ]
H P( ),

where Lq 5 u0t̃q
Ms

M
:

(7)

Note that in a state of RCE, 〈E〉 5 〈R〉, hence the basic-state
precipitation P0 5 pT〈E〉/g, which is the column-integrated
evaporation rate. Equation (7) is essentially a forced equation
with P relaxed toward P0 on the length scale Lq. Hence, if the
dry forcing 〈qd〉/tq 2 〈Td〉/tT is felt on a distance significantly
shorter than Lq, the latter will dominate in setting the length
of the downstream rain shadow.

The term Lq can be understood as a Lagrangian convective
length scale, whereby a column traveling at velocity u0 under-
goes moisture adjustment on a time scale t̃q. It is also inversely
proportional to the relative GMS M/Ms, which measures the
efficiency with which a column exports energy through diver-
gent flow, and thus returns to an equilibrium state. Lq is vanish-
ingly small, and the dry forcing is felt on equally small distances,
in the limit of zero wind (no advection), instantaneous convec-
tive adjustment, or infinite GMS (allowing for instantaneous
return to equilibrium). We estimate a ratio M/Ms 5 0.2 (see
section 4c) so that for u0 5 10 m s21, Lq � 1000 km. As
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suggested in the preceding paragraph, Lq places a lower
bound on the rain shadow length; such an extensive rain
shadow may seem unrealistic, but in real cases large-scale
processes and flow detouring around topography can
shorten the rain shadow. A time-varying cross-slope wind,
including episodes of reversed flow, would further shorten
the time-mean rain shadow. Note however that precipita-
tion is reduced over about 1000 km downwind of the West-
ern Ghats (Fig. 1c). This is consistent with the very broad
rain shadow downwind of Sri Lanka during the Indian sum-
mer monsoon (e.g., Biasutti et al. 2012).

c. A linear theory

Equation (7) can be solved for the precipitation field as a
function of moisture and temperature perturbations induced
by “dry” mountain flow. These perturbations can in turn be
obtained with several degrees of complexity, from a full
mountain wave simulation to a linear solution with uniform
background stratification. Here, in the spirit of the linear
model of SB04, we employ linear mountain wave theory to
obtain a closed expression relating mountain shape to precipi-
tation in the Fourier domain.

The linearized thermodynamic and moisture equations of
the dry mode (see appendix A) read

u0
dTd

dx
1 wd

ds0
dz

5 0; u0
dqd
dx

1 wd
dq0
dz

5 0, (8)

where we used height coordinates and dropped the y depen-
dence. Hence, the dry forcing for convection in (7) becomes

d
dx

qdL
tq

2
TdL

tT

( )
5

wdL

u0

1
tT

ds0
dz

2
1
tq

dq0
dz

( )
, (9)

where we have assumed that ds0/dz and dq0/dz do not
depend on z. This assumption may seem crude for the mois-
ture profile, which usually decays rapidly in height, but it is
accurate given an appropriate choice for wdL; it furthermore
retains the first-order physical picture that lower-tropo-
spheric ascent leads to moistening. We define the constant x
as the sum of two terms both contributing to enhanced
convection,

x 5
pT
g

1
tT

ds0
dz

2
1
tq

dq0
dz

( )
: (10)

These two terms represent, respectively, lower-tropo-
spheric cooling (due to adiabatic ascent), and moistening
(also due to ascent along a vertically decreasing moisture
profile, dq0/dz , 0). To obtain a linear equation, the nonlin-
ear Heaviside function in (7) has to be dropped; this
amounts to allowing negative Qc, which only influences the
solution in the downstream region, where drying and warm-
ing by the dry mode predominate. We now substitute (9)
and (10) into the linearized (7) and take the Fourier trans-
form, yielding

ikP̂
′
k( ) 1 P̂

′
k( )

Lq
5

ŵdL k( )
u0

x, (11)

where P′ 5 P 2 P0, k is the horizontal wavenumber and the
Fourier transform is denoted with a hat. Linear, Boussinesq
mountain wave theory expresses ŵd as (e.g., Smith 1979)

ŵd k, z( ) 5 iku0ĥ k( )eim k( )z

and m k( ) 5
										
l2 2 k2

√
if k2 , l2

i
										
k2 2 l2

√
if k2 . l2

,
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

where l 5 N/u0 and N is the Brunt–Väisälä frequency,
assumed positive and constant with height. N is related to the
basic-state lapse rate by N2 � (g/Tr)ds0/dz, with Tr a reference
temperature taken as cp 3 300 K. We have also assumed that
the density of air is uniform, given that perturbations are
averaged over the lower troposphere only. Combining (11)
and (12) gives the final relationship:

P̂
′
k( ) 5 ikx

ik 1 1=Lq
ĥ k( ) eim k( )z[ ]

L: (13)

After solving for P′, negative values of precipitation are avoided
by applying the (·)1 operator to P′ 1 P0. The above linear
expression for convective orographic precipitation is meant
to represent time-mean rain rates, as opposed to single-
event or extreme precipitation. It depends on two parame-
ters (tq and tT) and a number of physical quantities: u0, N,
the moisture lapse rate dq0/dz, the mountain profile h(x),
and, through Lq, the relative GMS M/Ms. We now explore
sample solutions with idealized mountain profiles to illus-
trate predictions of this theory.

d. Example profiles

We now illustrate the behavior of (13), obtaining quantita-
tive estimates for the influence of the convective response
times, the location and magnitude of the maximum precipita-
tion, and the upstream distance over which precipitation is
enhanced. For the mountain shape, we choose the classic
Witch of Agnesi profile h x( )5 h0l20=(x2 1 l20), where l0 is the
mountain half-width and h0 is the maximum height. The
basic-state wind u0 is set to 10 m s21, and the relative GMS,
which influences the Lagrangian convective length scale Lq, is
set to M/Ms 5 0.2, a representative value for tropical regions.
We set N 5 0.01 s21, or equivalently ds0/dz � 3 J kg21 m21 or
3 K km21. The lower-tropospheric average in (13) is taken,
for convenience, between two constant height (rather than
constant pressure) surfaces at z5 1000 and 3000 m. The mois-
ture lapse rate is computed as an average over the same layer
of the profile q0 z( )5 rqsat Ts( )e2z=Hm where r5 0.8, Ts 5 300 K
and Hm 5 2500 K, which yields dq0/dz � 28.1 J kg21 m21.
Finally, the equilibrium precipitation P0 5 4 mm day21.

Using a fast Fourier transform (FFT), we compute solutions
with two different mountain heights and varying tT and
tq (thick solid curves in Fig. 2). The reference case uses
l0 5 50 km, h0 5 1000 m, and tT 5 3 h and tq 5 11 h [with
the latter two computed by Ahmed et al. (2020), yielding
Lq 5 1188 km]. Precipitation is significantly enhanced starting
1500 km upstream and peaks near the steepest slope of the
ridge’s windward side, with a sevenfold enhancement compared

N I CO LA S AND BOO S 1763JULY 2022

Brought to you by UNIVERSITY OF CALIFORNIA LIBRARY Berkeley | Unauthenticated | Downloaded 06/20/22 06:50 PM UTC



to the undisturbed P0. Downwind, the rain shadow is about
1000 km long and precipitation overshoots P0 before slowly
relaxing back toward it. This behavior can be understood as fol-
lows: precipitation is suppressed immediately downstream of
the mountain because of the warm and dry lower free-tropo-
sphere created by the gravity wave, then humidity builds in
response to the reduced convective drying (in the presence of
the ongoing surface evaporation) past its RCE level to compen-
sate for the warm anomaly. The latter dissipates as the flow pro-
gresses further downwind, allowing for a convective overshoot.

A second case shows that increasing the convective time
scales by a factor of 1.5 mainly produces an inversely propor-
tional decrease in the upstream precipitation perturbation
(which is divided by 1.5). This occurs because, in the linear
solution (13), P′ is proportional to x, which is in turn inversely
proportional to the time scales; convection responds more
weakly to the dry gravity wave as the time scales are increased,
as specified in the simple convective closure (3). Additionally,
the increase in tq results in an increase in Lq, which primarily
lengthens the rain shadow. The third example in Fig. 2 (with
h0 5 500 m) confirms that, in this linear framework, halving
h0, while keeping other parameters constant, exactly halves P′.

Linear flow over a Witch of Agnesi ridge admits approximate
analytical solutions, allowing us to diagnose the various scales
involved in the upstream precipitation response. We perform an
inverse Fourier transform of (11) and then integrate, yielding

P′ 5 x

�x

2‘

wdL x′( )
u0

e2 x2x′( )=Lq dx′

5 xzL x( ) 2 x

�x

2‘

zL(x′)
Lq

e2 x2x′( )=Lq dx′
(14)

after integrating by parts and noting thatwd(x′, z)5 u0z(x′, z)/x′,
where z(x′, z) is the vertical displacement at x′ of a streamline
originating upstream at z. For mesoscale ridges satisfying
l0N/U.. 1, zL can be approximated as (Queney 1948)

zL x( ) 5 h0
cl20 2 sl0x
x2 1 l20

, (15)

where c 5 [cos(Nz/U)]L and s 5 [sin(Nz/U)]L. The first term
on the right-hand side of (14) is proportional to the lower-

tropospheric averaged vertical displacement; it scales like the
cold and moist anomaly created by the mountain wave, to
which precipitation would be proportional in the absence of
any moist mode anomalies. This term represents a distinct
influence of the mountain wave on precipitation compared
to that portrayed in the traditional literature on orographic
precipitation: this influence is a function of vertical displace-
ment, not vertical velocity. The second term acts as a damp-
ing: the moist mode responds to enhanced precipitation
with a negative humidity anomaly (〈qm〉 , 0) that develops
on a length scale Lq. In the limit l0/Lq → 0, this term
becomes negligible as the moist mode responds too slowly
(in a Lagrangian sense) to the perturbation induced by
the gravity wave. However, even for the small value of
l0/Lq � 0.05 used here, this second term provides a sizeable
precipitation reduction (cf. the dashed line, which repre-
sents the solution without this second term, with the solid
line of the same color in Fig. 2).

Because the second term in (14) varies on large scales
of order Lq, the location of the precipitation maximum,
xmax, will be set to first order by the location of maximum
vertical displacement zL for cases where l0/Lq ,, 1. One
obtains

xmax 5 2 l0

									
1 1

c2

s2

√
2

c
s

( )
: (16)

With the above parameters, xmax lies 76 km upstream of the
mountain peak, i.e., slightly upstream of the steepest slope

x5 2l0=
				
3( )√

(note that with this value of N/U, s . 0 and
c , 0). The amplitude of the precipitation maximum, Pmax,
will be more affected by the moist-mode damping; neglecting
that damping provides an upper bound,

Pmax #P0 1 xh0s
/
2

													
1 1 c2=s2

√
2 c=s

( )[ ]
: (17)

This expression overestimates the true precipitation maxi-
mum by about 30% for the above cases (dashed line
in Fig. 2).

We can also obtain from (14) an order of magnitude for
the upstream extent of the precipitation enhancement,
defined as the location xu where P′ exceeds a threshold dP.

FIG. 2. Precipitation predicted by the linear theory, (13), with a Witch of Agnesi mountain profile and varying
mountain heights and adjustment time scales (solid lines). The dashed line shows the precipitation obtained when
neglecting the damping term in (14) for the parameters given in the first line of the legend. The thin horizontal line
shows the basic-state precipitation P0.
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Far upstream of the ridge (i.e., x ,, 2l0), approximating
zL � 2h0l0s/x gives

P′ x( ) �2
xsh0l0
Lq

Lq

x
2 e2x=LqEi x=Lq

( )[ ]

� 2
xsh0l0
Lq

Lq

x
1 ln 1 2

Lq

x

( )[ ]

#
xsh0l0
2Lq

Lq

x

( )2
, (18)

where Ei is the exponential integral function, and the approxi-
mation used in the second equality is given in Abramowitz
and Stegun (1964). The inequality on the last line is valid for
x# 0. Hence, an upper bound on the upstream extent is

xu| |#
													
Lql0

xsh0
2dP

√
: (19)

The right-hand side of (19) is the geometric mean of two
terms, one scaling the upstream extent of the orographic
enhancement in the absence of damping and the other one
being Lq. The larger Lq, the less effective the damping, hence
the farther upstream a given value of dP is attained; in the
absence of any moist damping (i.e., Lq/l0 → ‘), xu 5 l0xsh0/dP.
With the above values for x, s, and l0, and for h0 5 1000 m and
dP 5 1 mm day21, (19) gives |xu| # 1746 km. The very good
agreement with the true value, of about 1700 km, is due to can-
cellation between the two approximations made in (18); (19)
overestimates the true |xu| by about 20% in the two other cases
shown in Fig. 2.

e. Summary

The theory presented in this section uses a quasi-equilib-
rium closure to solve for the convective precipitation forced
by a dry orographic gravity wave, through its modulation of
lower-tropospheric temperature and moisture. The most
general equation is (6); it retains the nonlinearity of the con-
vective closure and applies to flows with two horizontal
dimensions. Dropping a horizontal dimension leads to (7) and
introduces Lq, the Lagrangian convective length scale on
which precipitation converges to its equilibrium value P0; this
is also the rain shadow length scale in cases where the dry
forcing is felt on small distances. This nonlinear theory lacks a
closure for the dry perturbations induced by the orographic
gravity wave.

Treating the orographic gravity wave linearly, and neglect-
ing the nonlinearity of the convective closure, yields Eq. (13);
this is a closed theory relating mountain shape to the spatial
profile of convective precipitation, in the spirit of SB04. The
theory depends on a number of physical quantities and the
time scales of the convective closure, tT and tq. While (13)
can be solved numerically with an FFT, approximate analyti-
cal expressions are obtained in the case of a Witch of Agnesi
terrain, yielding expressions for the location of the precipita-
tion maximum and the upstream extent of the precipitation
enhancement. For some typical tropical parameter values and

a 1000-m-high, 200-m-wide ridge, precipitation is enhanced
about 2000 km upstream of the mountain, the peak precipita-
tion occurs slightly upstream of the steepest slope on the
upwind side, and the rain shadow is around 1000 km wide.
The peak precipitation magnitude depends on parameters
that are relevant both to the dry dynamics (wind speed, static
stability, mountain height) and the moist dynamics (convec-
tive adjustment time scales, relative GMS).

3. Numerical simulations

This section presents the framework we use to test the
theory: a set of convection-permitting simulations in which
a constant horizontal background flow in a long channel
encounters a ridge. In addition to comparing simulated pre-
cipitation from this model with our theory, we evaluate the
validity of the QE andWTG approximations.

a. Simulation setup

We use a three-dimensional idealized version of the
Weather Research and Forecasting Model (WRF-ARW,
version 4.1.5; Skamarock et al. 2019), which is fully compress-
ible and nonhydrostatic. The domain is periodic in x and y
directions, 9810 km long and 198 km wide with a 3 km hori-
zontal grid spacing. A single y-invariant ridge is present. It
uses 60 hybrid terrain-following/pressure vertical levels
stretching from the surface to 10 hPa, corresponding to about
28 km. The domain length is chosen so the flow fully recovers
to an undisturbed state after encountering the mountain ridge,
before circling back in the periodic domain. Comparisons of its
vertical structure 3000 km upstream (or, equivalently 6810 km
downstream) of the ridge with a flat, ocean-covered simula-
tion (not shown) shows no appreciable difference, confirm-
ing the domain length is sufficient. The y dimension is large
enough for several convective clouds of sizes O(1–10) km to
develop in that cross-stream direction. The 3 km grid spac-
ing is a compromise between the need for realistic simula-
tion of convection and the computational cost of long time
integrations. This resolution has been widely used in large-
domain convection-permitting simulations (Satoh et al. 2019),
including geometries similar to ours (Wing and Cronin 2016;
Wang and Sobel 2017). Kirshbaum (2020) found that in ideal-
ized cases of mechanically forced orographic convection
(though at smaller spatial scales and time scales) with interac-
tive surface fluxes (i.e., their MECH-FLX simulations), a reso-
lution of 2 km gave similar along-stream precipitation profiles
to runs at much smaller grid spacing O(100) m. Zhang and
Smith (2018) found that resolutions of 2 versus 6 km made lit-
tle difference in simulating orographic convection over the
Western Ghats.

Surface elevation is

h x( ) 5
h0
2

1 1 cos p
x
l0

( )[ ]
if x| |, l0;

0 otherwise;

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (20)

where l0 5 100 km (which yields a similar topography to a
Witch of Agnesi ridge of half-width 50 km). Hereafter, x runs
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from 24405 to 4405 km with the mountain at x 5 0. Such
one-dimensional terrain forces all parcels to ascend the ridge,
rather than detouring around it, but provides a first step
toward better understanding the interaction of deep convec-
tion with orography. The mountain’s surface (i.e., where
|x| , l0) is covered with land. To obtain a closed surface
energy budget and avoid having to choose a surface tempera-
ture lapse rate, the land surface is parameterized with the
Noah-MP scheme (Niu et al. 2011; Yang et al. 2011), using
four soil levels and a no-flux bottom boundary condition at
the lowest level. The rest of the domain is ocean covered with
fixed sea surface temperature of 300 K.

The Coriolis force is applied to deviations from a uniform
geostrophic wind u0 5 210 m s21 (i.e., an easterly wind), with
fixed Coriolis parameter f 5 4.97 3 1025 s21 (corresponding
to 208N). This is equivalent to imposing a background meridi-
onal pressure gradient, which maintains a constant back-
ground geostrophic flow. Microphysics are computed using
the single-moment Thompson et al. (2008) scheme, surface-
layer mixing employs the MM5 similarity theory (Jiménez
et al. 2012), and boundary layer fluxes are parameterized with
the Mellor–Yamada–Janjić scheme (Mellor and Yamada
1982; Janjić 2002). The model is run without a turbulence
scheme (although the surface-layer and PBL schemes do
parameterize turbulent mixing), but comparing the first 20 days
of simulation with a run having nonzero turbulent diffusion
does not show any appreciable difference. Radiation is com-
puted interactively every minute with the RRTMG scheme
(Iacono et al. 2008). All simulations have a diurnal cycle of inso-
lation but no seasonal cycle (the solar declination angle is fixed
to 08, a state of perpetual equinox).

We perform two “control” simulations, one with mountain
height h0 5 1000 m and the other with h0 5 500 m. The first
case is close to several mountain ranges of South Asia (Western
Ghats, Annam Range, Arakan Yoma) and yields a nondimen-
sional mountain height Nh0/u0 � 1.2. This suggests moderate
flow blocking by the ridge and possible flow splitting if the
mountain were not infinite in y (Smith 1989), indicating a limi-
tation of our setup. This limitation has implications for leeside
flow: Epifanio and Durran (2001) showed that downstream
temperature perturbations are higher with a y-invariant ridge
than when the flow is allowed to split, even with mountains of
high aspect ratio. Upstream flow could also be decelerated
more rapidly for the infinite ridge. However, our use of rota-
tion prevents the development of an upstream-propagating
bore (Pierrehumbert and Wyman 1985), and instead sets up a
barrier jet (see also section 3b). Convection may also reduce
the nonlinear effects that occur for a high nondimensional
mountain height by lowering the effective stability felt by the
flow, as explained in section 3c.

The h0 5 500 m case is perhaps a better test for the linear
theory and more realistic because it exhibits reduced blocking
(Nh0/u0 5 0.6) and thus is farther from the limit of a high, infi-
nitely long ridge; in this regime, high aspect ratio and y-infinite
ridges have similar leeside flows (Epifanio and Durran 2001).
Both simulations are integrated for 200 days with statistics col-
lected after spinup of 50 days.

An additional simulation with h0 5 1000 m is run with
latent heating turned off (the “Ly 5 0 simulation”) to assess
the effect of the mountain on the flow in the absence of moist
convection. It is initialized with mean temperature and mois-
ture soundings from the control and run for 100 days, with
radiation and surface fluxes turned off. Water can still con-
dense and fall, and virtual temperature effects are retained.
The temperature profile warms in the boundary layer by
about 3 K in this run, but sees little change aloft; the vertical
profile of N, which controls the mountain-induced dry gravity
wave (Durran 2003), is little altered.

b. Precipitation and CAPE

Meridionally averaged and time averaged (from days 50 to
200) precipitation and CAPE from the h0 5 500 and 1000 m
runs are shown in Fig. 3. Here, and subsequently, the x axis is
oriented so the background wind flows left to right; i.e., east is
on the left, and west on the right. Pn denotes precipitation in
the n m run. Both CAPE and precipitation are nearly cons-
tant more than 4000 km downstream of the mountain peak
and more than 1500 km upstream. This, together with the
absence of mean upward motion in that region (not shown),
indicates a state of RCE far from the mountain. This supports
our claim that the periodic domain is long enough for the flow
to recover from the disturbance imparted by the ridge.

We now discuss some key features of the precipitation
profiles. Upstream-averaged precipitation (i.e., from 2000 to
5000 km upwind of the peak) is about P0 5 4.5 mm day21 for
both runs. The orographic enhancement exceeds 1 mm day21

starting 670 and 720 km upstream for P500 and P1000, respec-
tively. The length scale of this upstream enhancement is an
order of magnitude larger than typically observed in midlati-
tudes (e.g., SB04) or in shallow-convective tropical flows (e.g.,
Kirshbaum and Smith 2009). It is consistent with observa-
tional profiles from Fig. 1. Section 2 suggests this is due to the
sensitivity of deep convection to thermodynamic perturba-
tions from the mountain wave that are felt far upstream;
section 4 will examine this hypothesis in greater detail.
Both runs have pronounced rainfall peaks (about 12 and
20 mm day21, respectively) on the upwind mountain slope,
about 55 km upstream of the peak (slightly upwind of the
maximum slope). In the rain shadow region, the negative
anomalies are smaller in the h0 5 500 m run than in the
h0 5 1000 m run, as expected from the linear theory. Both
runs return to the background value P0 around the same loca-
tion, 2000 km downstream. Unlike the linear runs with a Witch
of Agnesi profile, there is no clear overshoot past P0 down-
stream. This is mostly due to the different mountain shapes
employed, as we will see that this overshoot vanishes when
applying (13) to the cosine terrain shape (20) in section 4c.
Both runs display a small rainfall peak immediately down-
stream of the ridge. This feature is likely related to nonlinear
dynamics, perhaps involving a hydraulic jump causing strong
upward motion at this location (see Kirshbaum et al. 2018).
We do not devote further attention to it, given its small ampli-
tude and limited spatial extent.
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Under the assumptions of linearity made in section 2c, chang-
ing the mountain height should scale the orographically modi-
fied precipitation proportionately, so P1000 2 P0 5 2(P500 2 P0).
Figure 3 shows this test of linearity, in which P1000 is approxi-
mated by (2P500 2 P0)1, alongside the simulated P1000. There is
remarkable agreement, with the prediction lying within the
uncertainty bounds of P1000 at nearly all locations. This provides
confidence in the relevance of linear theory to mechanically
forced orographic convection (we compare with our theory in
detail in section 4).

The presence of a barrier jet in our simulations (not shown)
raises the question of its influence on precipitation (e.g.,
Neiman et al. 2013). Consistent with theory (Pierrehumbert
and Wyman 1985), it extends to a Rossby deformation radius,
about 2000 km, upstream of the mountain. No significant
departure from the background precipitation is detectable
this far upstream. Good agreement on the upstream extent of
precipitation between the linear theory and the simulations
(see section 4c) is another indication that barrier jet dynamics
have little effect on rainfall in these runs. Barrier jets might,
however, have greater importance for more nonlinear flows,
with stronger jets leading to enhanced or shifted rainfall pat-
terns (as shown for the Sierra Nevada by Neiman et al. 2013).

Examination of the diurnal cycle of precipitation (not
shown) in the h0 5 1000 m run can serve as a probe of the
importance of thermal forcing for convection. Between the
mountaintop and 200 km upstream, the diurnal cycle of
precipitation has an amplitude of 20% of the time-mean
value. This is smaller than in the RCE part of the domain,
where the relative amplitude is 25%, and suggests a small
role for island surface fluxes in producing rainfall. For com-
parison, Wang and Sobel (2017) simulated thermally forced
convection over isolated islands and reported relative
amplitudes of the diurnal cycle of around 80%.

We also show CAPE in Fig. 3 to illustrate the difficulty of
using CAPE-based closures in theory for orographic precip-
itation. Despite the cooling effect of the gravity wave on the
lower free troposphere upstream of the mountain (analyzed
in more detail in section 4c), CAPE gradually decreases
starting 500 km upstream and drops to almost zero above
the mountain. This can be understood as a progressive con-
sumption of CAPE by enhanced convection, triggered by
reduced convective inhibition [CIN; Ahmed et al. (2020)
highlight the similarity of the q–T closure to CIN-based con-
vective parameterizations]. Downstream of the ridge,
reduced convection allows CAPE to build and even over-
shoot its upstream value, much like the linear theory for
precipitation (Fig. 2). CAPE-based closures typically diag-
nose precipitation as the ratio of CAPE to a convective time
scale; the latter would have to vary spatially here to accom-
modate the absence of proportionality between CAPE and
P. The time scale would have to decrease upstream of and
above the mountain (e.g., due to orography “triggering”
convection by mechanical forcing) and increase down-
stream. The challenge of such an approach is that the rain-
fall profile is highly sensitive to spatial variations of the time
scale, rendering derivation of a physically based closure
difficult.

c. Vertical motion

Figure 4 shows time and meridionally averaged vertical
velocity in the h0 5 1000 m control run and the Ly 5 0 run.
Interaction of the basic-state flow with the mountain produces
a gravity wave in the Ly 5 0 run that influences the flow
between about 500 km upstream and 2000 km downstream of
the mountain, beyond which the wave amplitude decays to
less than 0.01 m s21. Vertical motion in the control run
strongly resembles that in the Ly 5 0 run from 200 km

FIG. 3. Time and meridional mean (a) precipitation and (b) CAPE in the h0 5 500 and 1000 m runs. Thin horizontal
lines indicate the upstream-averaged (between x 5 22500 km and 23000 km) values. The magenta line in (a) shows
the result of doubling the orographically modified part of the precipitation (P 2 P0) in the h0 5 500 m run. Shading
shows the interquartile ranges, as computed from binning each quantity into meridional and 10-day means at each lon-
gitude. Note that the topographic shape is different here from the Witch of Agnesi used in Fig. 2, which was employed
for purposes of analytical tractability.
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upstream to 1000 km downstream of the ridge.2 Further
upstream (between x 5 21000 and 2200 km), deep ascent is
visible in the time mean, suggesting that enhanced precipita-
tion in this region is due to a feedback of moist convection on
the mountain-induced low-level ascent. Lee waves are more
prominent in the Ly 5 0 run, and w has slightly greater ampli-
tude above the mountain, indicating higher flow nonlinearity
in that run. This is consistent with the mountain wave in the
control run experiencing a lower effective static stability due
to latent heat release [see examples of Lalas and Einaudi
(1973) for fully saturated atmospheres or Lapeyre and Held
(2004) and O’Gorman (2011) for more general, unsaturated
flows].

The similarity between the dry and moist w above the ridge
raises the question of how much precipitation the dry wave
would produce without moist convective feedback. The
Ly 5 0 simulation does produce precipitation in its initial
times, before moisture has been depleted (there are no sur-
face fluxes in that run), though in a very different form (it is
of stratiform type, and focused on the upwind slope only).
Including this “dry mode precipitation” in the theory would
require also decreasing qdL, which would have a compensat-
ing effect on the moist mode, leaving total precipitation nearly
unchanged.

To illustrate the dynamics producing rainfall over the ridge,
we plot the instantaneous vertical velocity at 500 hPa at a
rainy time in Fig. 5. Vertical motion over the upwind slope is
composed of isolated deep convective cells (extending to
200 hPa, not shown) surrounded by cold pools, qualitatively
similar to cells observed upstream over ocean. This justifies
our approach of developing a theory for orographic

precipitation based on the behavior of an ensemble of convec-
tive motions. Past the mountaintop, convective motions are
absent, consistent with the lack of precipitation there.

d. Thermodynamic equation

We now evaluate the degree to which the linearization we
employed as our starting point in (1a) and (1b), as well as
WTG, are valid approximations.

Figure 6a shows vertically averaged terms from the thermo-
dynamic Eq. (A1a) and its linearized version (1a), computed
using time and meridional mean quantities (denoted with an
overbar). Diabatic heating is computed as a residual and plot-
ted with precipitation (or rather gP/pT) for comparison. The
diagnosed diabatic heating underestimates precipitation
immediately downstream of its peak, but shows very good
agreement upstream. The linearized terms (i.e., replacing u
and s by u0 and s0) closely match the “full” terms except
between 30 km upstream to 100 km downstream of the peak.
Much of the precipitation is concentrated upwind of this
region, where it is accurately matched by the diabatic heating
diagnosed from linearized terms. Between x 5 230 and
1100 km, the small diabatic heating indicates that the dis-
agreement between linearized and full terms is unlikely to be
due to moist effects, and rather due to the nonlinear part of
the dry mountain wave.

We now turn to validation of the WTG assumption. The
good match between linearized temperature advection terms
from the h0 5 1000 m simulation (i.e., u0 · $ Td 1 Tm

( )〈 〉
) and

from the Ly 5 0 simulation ( u0 · $Td

〈 〉
), shown in Fig. 6b,

ensures that |u0 · $Tm| ,, |u0 · $Td|. The smallness of the dry
residual u0 · $Td 1vdds0=dp

〈 〉
indicates that the dry-linearized

thermodynamic budget holds. Taken together, these indicate
that vmds0=dp

〈 〉 � Qc

〈 〉
1 R〈 〉, which is exactly the WTG

approximation.

4. Comparing theory and simulations

Precipitation profiles from the convection-permitting
numerical simulations are now used as a first test of our the-
ory. We compare these profiles against both the linear theory

FIG. 4. Time and meridionally averaged vertical velocities from the (a) h0 5 1000 m control run and (b) Ly 5 0 run.
Note the nonlinearity of the color scale.

2 A simple scale analysis explains the prominence of the “dry”
gravity wave in the moist simulation. Dry vertical motion scales
as wdry ∼ u0dh=dx � 0:15m s21, while the diabatic w scales as
wdiabatic 5Qc=(ds0=dz)5 (gP=pT )=(TrN2=g) � 0:024m s21, using
P 5 20 mm day21 (multiplied by rwLy), Tr 5 cp 3 300 K, and
N 5 0.01 s21. Hence, gravity wave dynamics are expected to
dominate over the ridge unless time-mean P increases by an
order of magnitude.
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in (13) and the nonlinear one in (7), with the dry forcing for
the latter extracted from the simulations. We will show that
while precipitation profiles are well captured by the theory,
their upstream amplitude is overestimated. This issue is
addressed by modifying the adjustment time scales to values
appropriate for seasonal means. A last adjustment incorpo-
rates the downstream modulation of surface evaporation and
radiative cooling to (7).

a. Temperature and moisture deviations; validity of QE

We first examine lower-tropospheric temperature and
moisture perturbations of the dry mode, which drive convec-
tion in (7), and compare these to predictions of the linear the-
ory [obtained by combining (8) and (12)].

Figures 7a and 7b show T′
L and q′L from the h0 5 1000 m

control and Ly 5 0 runs. These are time-averaged, meridio-
nal-averaged, and pressure-averaged (875 to 700 hPa) devia-
tions from a mean sounding 3000 km upstream of the
mountaintop. Under our WTG assumptions, T′

L 5 TdL, so we
also plot TdL as predicted by linear mountain wave theory

with N 5 0.01 s21. The agreement is generally good, espe-
cially given our neglect of nonlinearity of the dry mountain
wave, shown to be important above the peak in Fig. 6. How-
ever, upstream of the mountain, T′

L in the control run is about
a third smaller in magnitude than in the Ly 5 0 run, which is
consistent with the dry mode feeling a reduced static stability
in the control run with latent heat release (see section 3c). Includ-
ing this effect in the theory would challenge our assumption that
the dry mode is unaffected by the moist mode, and is left as poten-
tial improvement for future work.

An equally important modulator of convection is q′L,
which is shown in Fig. 7b. We do not expect the control and
Ly 5 0 runs to produce similar distributions of qL: qmL is
expected, upstream, to be reduced by the precipitation forced
by the dry mode, which happens as expected. Linear theory
(with the same moisture lapse rate as in section 2d) matches
qdL estimated from the Ly 5 0 run upstream of the mountain
peak (except its peak value is too high), and overestimates
orographic wave-induced drying downstream. Moisture deple-
tion at the beginning of the dry run (see section 3c) may

FIG. 6. Vertically averaged thermodynamic budget terms. (a) “Full” (nonlinear) terms for the h0 5 1000 m control
run, as well as their linearized version (obtained by fixing u and s to their basic-state values). The simulated precipita-
tion rate is shown in blue for comparison. (b) The linearized heat advection and adiabatic cooling terms, comparing
the h0 5 1000 m control and Ly 5 0 runs. The vertical black lines show the extent of the mountain.

FIG. 5. Instantaneous vertical velocity at 500 hPa in the vicinity of the mountain, from the h0 5 1000 m run, day 150, 19 h.
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explain this discrepancy, as qdL is evaluated from the last 50
days of the Ly 5 0 run.

Altogether, these results suggest that linear theory (13) will
estimate upstream distribution of precipitation nearly as accu-
rately as the nonlinear theory (7) forced by the simulated qdL
and TdL. One might expect the linear theory to yield a higher
magnitude, due to an overestimated temperature decrease, if
a reduced effective static stability is not used. Several ele-
ments are expected to affect predictions of the linear theory
in the rain shadow: the overestimated subsidence-induced
drying, and the neglect of the constraint that convective heat-
ing be nonnegative.

The thermodynamic perturbations displayed in Figs. 7a and
7b also allow evaluation of the validity of the QE hypothesis,
which is often expressed as

due,b ∝ du*e p( ), (21)

where ue,b is the equivalent potential temperature below
cloud base, u*e p( ) is the saturation equivalent potential tem-
perature at a level that is in QE with subcloud base air, and d

expresses a variation in space or time (e.g., Emanuel et al.
1994). Past observational tests of QE have assessed these var-
iations, evaluating them only in regions where convection is
not suppressed and vertically averaging the right-hand side of

(21) over the layer of interest (e.g., Brown and Bretherton
1997). Figure 7c shows time-mean horizontal deviations of
ue,b (averaged over the bottom three terrain-following levels,
from approximately 70 to 400 m above the surface) and u*e
(averaged over our standard lower-tropospheric layer and
hence denoted u*e,L) from their far upstream values. Upwind
of the mountain to the location of the peak precipitation, the
decrease in ue,b is commensurate with that in u*e,L, indicating
that QE holds to a good approximation there. Between the
mountaintop and x 5 1000 km, where convection is sup-
pressed (gray shaded region in Fig. 3c), one does not expect
QE to hold, and ue,b is greatly reduced compared to u*e,L; the
two variables then converge as convective activity is recov-
ered farther downstream.

Although this correspondence between variations in ue,b and
u*e,L in convecting regions indicates that a lower-tropospheric
QE relation holds in the time mean in our simulations, it also
seems worthwhile to discuss some relevant time scales. QE is
based on the idea that the evolution of the forcing (here, cool-
ing and moistening of the lower troposphere by the orographic
wave) occurs on time scales much longer than those of the con-
vective response. In an Eulerian framework, the orographic
mechanical forcing is steady and we are concerned with the
time mean response, so the time scales of the forcing and
convective response are extremely well separated. One could,

FIG. 7. Profiles of lower-tropospheric averaged (a) temperature and (b) moisture perturbations relative to 3000 km
upstream in the h0 5 1000 m control and Ly 5 0 simulations, as well as perturbations computed from the linear theory
[(8) and (12)]. (c) Perturbations of lower-tropospheric averaged saturation equivalent potential temperature and
boundary layer averaged equivalent potential temperature, in the h0 5 1000 m control run. Gray shading shows the
convectively decoupled region where P1000 , 2 mm day21.
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however, take a Lagrangian view in which air columns are
advected by the mean wind toward the mountain, so the forcing
evolves on a time scale l/u0, about 7 h if l is the e-folding length
scale of perturbations upstream of the mountain (about 250 km).
That time scale is not well separated from the convective
response time of order 2–3 h (e.g., Tulich and Mapes 2010;
Ahmed et al. 2020). However, similarly rapid transport of air
masses into the region of precipitating large-scale ascent occurs
in disturbances that QE is often used to describe, such as the
Madden–Julian oscillation (Madden and Julian 1971; Haertel
et al. 2017) and tropical cyclones (Emanuel 2007). In such distur-
bances and in our orographic forcing, QE is not being used to
describe a single Lagrangian event, but the mean of a large
ensemble of such events. In an Eulerian framework, such a sys-
tem would be described by a fixed column subject to a steady
advective tendency, with the large-scale forcing evolving on long,
seasonal time scales.

b. Precipitation from prior theories

Before comparing the simulated mean rainfall to the theory
developed in section 2, we evaluate the performance of two
well-known theories for mechanically forced orographic pre-
cipitation: the “upslope” model (see, e.g., Roe 2005) and the
linear theory of SB04. Both assume that condensation occurs
due to upward motion in a saturated layer. The upslope
model assumes terrain-parallel flow at all levels, while SB04
use linear mountain wave theory to solve for w. The latter
model specifies time scales for the conversion of condensed
water to raindrops and subsequent fallout.

With the topographic shape defined in (20), terrain-parallel
flow produces ascent over the upwind slope only, and down-
ward motion over the lee slope only. This renders the upslope
model incapable of capturing any precipitation enhancement
upstream of x 5 2100 km, and any rain shadow downstream
of x 5 100 km. It predicts peak precipitation of around
450 mm day21, an order of magnitude larger than the simu-
lated value. We do not plot profiles from the upslope model
because of this poor fit.

Although convection is not specifically represented in the
SB04 model, latent heating is taken into account by using the
moist Brunt–Väisälä frequency, Nm, as a measure of flow sta-
bility. However, this quantity is imaginary in the present case
as g . Gm in the lower troposphere, where g 5 2dT/dz
(respectively Gm) is the environmental (respectively moist-
adiabatic) lapse rate. Because of the similarity of the ascent
patterns with and without latent heating (see Fig. 4), we
choose to use SB04’s model by replacing Nm with N.

Because this theory assumes saturated flow, it is expected
to overestimate precipitation if nonprecipitating times are not
accounted for. So we compute the time- and meridional-mean
rain rate excluding nonprecipitating times (appendix B pro-
vides details), which roughly doubles P′ (i.e., P1000 2 P0) com-
pared to the full time mean. This suggests the SB04 prediction
of P′ should be divided by 2, but a better fit to the WRF simu-
lation is obtained when dividing P′ by 2.5 (green line in
Fig. 8a). We used conversion and fallout times of 2000 s,

P0 5 4.5 mm day21, Gm 5 4.3 K km21, g 5 5 K km21 and
N5 0.012 s21.

While the SB04 theory captures the general shape of pre-
cipitation upstream of the mountain, it underestimates its
upstream extent. But its largest bias lies in the lee, where
instead of reproducing the simulation’s long rain shadow, it
predicts a strong secondary precipitation maximum due to the
mountain wave ascent there. Hence, although the SB04 model
is regarded as a skillful predictor of midlatitude orographic
precipitation, it has important deficiencies for this case of
tropical deep convective rainfall.

c. Precipitation from the present theory

We now assess the linear theory (13). Applying it with the
same parameters used in section 2d overestimates the uncon-
ditional time-mean peak precipitation in the WRF simulation
by a factor of 2–3 (not shown), as occurred for the SB04 the-
ory. We hypothesize that this occurs because increased adjust-
ment time scales (tq and tT) are needed when applying the
theory to seasonal-scale time means. Spatiotemporal averag-
ing of the convective heating term (3) necessarily includes
nonconvective regions and times, yielding higher effective
adjustment scales (Ahmed et al. 2020). The theoretical P′ is,
in the upstream region, inversely proportional to the adjustment
scales because (7) is linear in that region where P. 0. This sug-
gests that accounting for nonprecipitating times requires
increasing tq and tT, compared to the “instantaneous” values
estimated by Ahmed et al. (2020). The simulated mean precipi-
tation is best fit by increasing both adjustment times 2.5-fold
(yielding tT 5 7.5 h and tq 5 27.5 h), near the factor of
2 expected from excluding nonprecipitating times from the time
average (see above and appendix B).

Figure 8b displays the application of (13) to the mountain
profile (20) used in the simulations, with h0 5 1000 m (Fig. 8c
shows the same for h0 5 500 m). We set P0 5 4.5 mm day21

to match the simulations (see section 3b). We use the same
values of dq0/dz and ds0/dz as in section 2d, and we keep
M/MS 5 0.2 henceforth.3 Linear theory overestimates the
peak precipitation on the upwind flank of the ridge. The fit
might be improved by accounting for a lower effective static
stability (as explained in section 4a), but we did not attempt
this. Note that without adjusting the time scales, it would be
substantially higher than what the linear theory produced for
the Witch of Agnesi profile (Fig. 2) because of the steeper
ascent imposed by (20). A more gradual ascent provides a
greater distance for P to relax back to P0 [first term on the
right-hand side of (7)].

As an intermediate level of complexity between linear the-
ory and the convection-permitting simulations, Figs. 8b and 8c
display mean precipitation computed from the general precip-
itation Eq. (7). This required estimating the dry forcings TdL

and qdL. TdL was estimated from the h0 5 1000 and 500 m

3 Indeed, following the method outlined by Yu et al. (1998), we
estimate Ms 5 2370 kg21 and Mh 5 455 kg21 in the h0 5 1000 m
run (Ms 5 2341 J kg21 and Mh 5 450 J kg21 in the h0 5 500 m
run).
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simulations. We did not take it from the Ly 5 0 run because
we suspect the dry mode in that simulation behaves differ-
ently due to a higher effective static stability than in the con-
trol run (see sections 3c and 4a); using a more accurate
estimate offers a better test of the theory. We estimated qdL
from the Ly 5 0 simulation (we used half this value for the
h0 5 500 m run, due to the absence of an h0 5 500 m, Ly 5 0
run), because it cannot be directly estimated from the con-
trol simulation due to the moist and dry mode both contrib-
uting to specific humidity anomalies (see section 4a).
Downstream of the mountain, qdL oscillates in a way not
seen in the dry mode of the control run (owing to the
smaller amplitude of the orographic lee wave, see Fig. 4),
but we did not correct for this. All other parameters are the
same as above, and (7) is integrated numerically with a
backward differentiation formula method. As expected
from the profiles in Figs. 7a and 7b, precipitation computed
this way compares well with linear theory, except for a peak
that is smaller and shifted modestly downstream, hence
closer to the simulated rainfall.

Two effects explain the differences between precipitation
rates computed from our general precipitation equation in (7)
and our linear theory, (13), downstream of the mountain.
First, oscillations in the precipitation rate, including a weak
local maximum between 400 and 600 km downwind of the
mountain peak, are due to the shapes of qdL and TdL in the
convection-permitting simulations. Second, the Heaviside
function in (7) increases the length of nonprecipitating

regions; forbidding negative values of P reduces the recovery
rate (P0 2 P)/Lq, so that P converges toward P0 more slowly.

d. Surface evaporation and radiative cooling in the
rain shadow

Using the nonlinear theory with increased time scales over-
estimates the simulated precipitation downstream of the
mountain (Figs. 8b,c), possibly because the theory neglects
variations in surface latent heat fluxes and radiative cooling
(i.e., it assumes P0 is uniform). Profiles of 〈E〉, 〈R〉, and the
surface sensible heat flux are shown in Fig. 9a.

The starkest deviations from the constant upstream values
occur above the mountain and 100 to 2000 km downwind of
the mountaintop. A strong reduction in surface evaporation
above the ridge, which is covered with land, is largely com-
pensated by increased sensible heating. Downstream, surface
evaporation increases over a 200-km-long region before
decreasing to 80% of its upstream value. This decrease in the
region x . 200 km can be attributed (not shown) to increased
near-surface relative humidity, likely caused by suppressed
convection in that region. Suppressed convection also reduces
the occurrence of high clouds and, as a consequence, increases
radiative cooling by up to 10% downstream. Earlier theory
(e.g., Fuchs and Raymond 2002) parameterized this effect
with a feedback factor, setting 〈R〉′ proportional to P′ (where
〈R〉′ denotes radiative cooling minus its RCE value).

The downstream modulation of 〈E〉 and 〈R〉 strongly
decreases P0, according to (6). Accounting for this in (7)

FIG. 8. Profiles of mean precipitation rates over (a),(b) 1000- and (c) 500-m-high mountains. Solid lines are simu-
lated rates, and dashed lines are computed from the nonlinear theory in (7) with lower-tropospheric perturbations qdL
and TdL diagnosed from simulations (see text), and dotted lines are profiles from the closed linear theory in (13). The
convective adjustment scales are taken from Ahmed et al. (2020) in (a), then increased 2.5-fold in (b) and (c). The thin
horizontal lines show P0.
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nearly halves the computed rain rate downstream, as shown
in Fig. 9b. Incorporating a closure for 〈E〉 and 〈R〉 into our
theory, rather than diagnosing these from simulations, is left
for future work.

5. Summary and conclusions

We present a theory of convective precipitation forced by
the mechanical effects of orography at low latitudes. It starts
with decomposition of the flow into the sum of a dry mode,
carrying the orographic gravity wave, and a moist mode bear-
ing the convective response. Precipitation is assumed to be
produced entirely by the moist mode, whose dynamics are
vertically truncated and subject to the WTG approximation.
Convective heating responds to lower-tropospheric tempera-
ture and moisture perturbations carried by both modes in a
quasi-equilibrium framework. Two degrees of complexity can
be employed. The first consists of computing the dry mode
perturbations with a numerical model for use in the theory,
with the theory retaining the nonlinearity of the convective
closure. The second option neglects this nonlinearity and
assumes linear mountain wave dynamics to derive a linear
model of convective orographic rainfall much in the spirit of
the SB04 midlatitude model. The linear theory provides ana-
lytical solutions to probe the sensitivity of maximum precipi-
tation, upstream extent of precipitation enhancement, and
rain shadow length to the physical parameters at play, namely,
upstream wind, convective adjustment scales, relative GMS,
static stability, and moisture lapse rate.

This theory describes time-mean rainfall in tropical oro-
graphic regions, and assumptions related to the vertical struc-
ture of the moist mode and WTG prevent its use in
midlatitudes. Its applicability to short-term precipitating
events is also questionable, owing to the unsuitability of the
QE assumption at these time scales. It does not account for
cloud delays nor the advection of hydrometeors, although we
believe these could be added to the linear version without

much difficulty. Most importantly, the model is not suited to
the description of thermally forced orographic convection.

The theory is tested against convection-permitting simula-
tions in long-channel geometry. The dry orographic gravity
wave is prominent in the moist model, justifying its consider-
ation as a driver of terrain-generated convection. After cor-
recting adjustment time scales to account for the effects of
seasonal averaging, the theory accurately reproduces precipi-
tation rates simulated by this model, especially upstream of
the mountain peak. The linear version is skillful at modeling
dry temperature and moisture deviations, and hence precipi-
tation, upwind of the ridge. The mountain alters surface evap-
oration and radiative cooling far downstream, reducing
rainfall there. We note that the nondimensional mountain
heights considered here avoid strongly nonlinear flows; testing
the theory in such cases is left for future work.

This theory is envisioned as a tool for understanding the
spatial variability of rainfall in tropical orographic regions
where mechanical forcing prevails. Examples include South
Asia and Mexico during their respective summer monsoons,
or most tropical land regions subject to an autumn monsoon
(Ramesh et al. 2021). Understanding the interaction of large-
scale flow with orography in such regions is key to compre-
hending past variability in tropical rainfall, as well as predict-
ing changes in coming decades. The theory could also be used
to probe the importance of orography in shaping large-scale
tropical circulations through its influence on moist convection.
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APPENDIX A

Decomposition into Dry and Moist Modes

We describe flow over a tropical mountain as the sum of a
dry mode (representing the influence of orography in the
absence of condensation) and a moist convective one. The
dry mode affects the moist mode through convective heating,
but the moist mode does not feed back on the dry mode.
Steady-state thermodynamic and moisture equations are

u · $T 1 v
s
p

5 Qc 2 R, (A1a)

u · $q 1 v
q
p

5 Qq 1 E, (A1b)

with notation as in section 2a. Wind, moisture, and temper-
ature are decomposed as follows:

v 5 0 1 vd 1 vm,

u 5 u0 1 ud 1 um,

q 5 q0(p) 1 qd 1 qm,

T 5 T0(p) 1 Td 1 Tm,

(A2)

where subscripts d and m denote dry and moist modes,
respectively.

We now linearize (A1a) and (A1b) about a state of uni-
form horizontal wind u0, zero vertical velocity, and horizon-
tally uniform dry static energy s0(p) and specific humidity
q0(p). We justify this approach based on scales estimated
from the h0 5 1000 m control and Ly 5 0 simulations. For
horizontal advection terms, the assumption |um| ,, |u0| is
well justified as the standard deviation of u is less than
2 m s21 in the RCE region of our convection-permitting
simulations. The dry mode, on the contrary, is expected to
be nonlinear, as |ud|/|u0| � Nh0/u0. Nevertheless, we find in
the simulations that |ud| ,, 0.3|u0| everywhere except right
above the mountain. In section 3d, we show that such nonli-
nearity in the dry dynamics does not seem to affect the
moist mode dynamics, despite its local importance in the
thermodynamic budget.

For vertical advection terms, we assume sd/p, sm/p ,,

s0/p, with a similar treatment for moisture stratification.
Again, this is supported by the simulations except for the dry
perturbations right above the mountain. In height coordinates,
s0/z � 4 K km21, and deviations above the mountain in the

Ly 5 0 simulation give sd=z| |�12 2K km21. Static stability
variations from the moist mode are at least two orders of
magnitude smaller than the basic-state static stability (see
Neelin and Zeng 2000).

Using these approximations, (A1a) and (A1b) become

u0 · $Td 1 vd
s0
p

1 u0 · =Tm 1 vm
s0
p

5 Qc 2 R,

(A3a)

u0 · $qd 1 vd
q0
p

1 u0 · =qm 1 vm
q0
p

5 Qq 1 E:

(A3b)

The first two terms in each equation (the dry mode) balance
each other, expressing conservation of potential temperature
and moisture in the dry perturbation. Note that Qq could
potentially be nonzero in the dry mode (i.e., some moisture
could condense and fall, even in the absence of latent heat-
ing), but this effect is confined to the upwind mountain slope
in the Ly 5 0 run (consistently with Zhang and Smith 2018);

FIG. B1. (a) Hovmöller diagram of precipitation rate in the
h0 5 1000 m run (in the x–t plane). An example characteristic line
(L175days) is shown in white. (b) Precipitation averaged over charac-
teristic lines. The x axis shows the time at which a characteristic
line starts, at x0 5 24905 km. The solid black line denotes the
threshold defining a precipitating characteristic (2 mm day21).
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further discussion is provided in section 3c. Accounting for the
dry mode balance in (A3a) and (A3b) yields (1a) and (1b).

APPENDIX B

Selection of Precipitating Times

To justify the increase in adjustment time scales needed to
represent seasonal-mean dynamics, we show how the exclusion
of nonprecipitating times leads to a doubling of the time-mean
rain rate. Rainfall in the h0 5 1000 and 500 m simulations is
produced by a variety of convective systems (e.g., Fig. 5) propa-
gating near velocity u0. Figure B1a shows a Hovmöller diagram
of meridionally averaged precipitation over days 175–200 in the
h0 5 1000 m simulation. We average precipitation over charac-
teristic lines Lt 5 [t, x(t) 5 x0 1 u0t] with x0 5 24905 km and
t running from days 50 to 188 (the last time for which the
whole characteristic line is included in the domain) in hourly
samples. The resulting Pcharacteristic(Lt) is plotted for days
175–188 in Fig. B1b. The mean rainfall over precipitating times,
Pprecipitating, is then computed as the average over characteristic
lines satisfying Pcharacteristic . 2 mm day21. It is displayed in
Fig. B2, along with the all-time mean P1000.
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