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Abstract

The distribution of land and ocean on Earth’s surface shapes the
global atmospheric circulation and climate by modulating fluxes of
water and energy between the surface and the atmosphere. Here we
rearranged land in an idealized climate model to explore the effect
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2 Continental configuration controls the base-state water vapor...

of eight simplified continental configurations on global climate, finding
several counterintuitive results. The limited capacity of land to hold
water and the smaller heat capacity of land compared to ocean—rather
than surface albedo differences—are the primary drivers of continen-
tal control on global mean temperature. Specifically, the presence of
land in certain locations can enhance tropospheric water vapor con-
tent, increasing the greenhouse effect and clear-sky shortwave absorption;
these effects can warm the planet more than the cooling effect of
higher land surface albedos. For example, continental configurations
with land in polar regions and large tropical oceans have the warmest,
wettest global climates. Configurations with large tropical land masses
are not hot desert planets, but have the coolest global climates due
to reduced evaporation and thus reduced atmospheric water vapor
compared to configurations without land in the tropics. Interactions
between the small heat capacity of land and the seasonal cycle can
lead to certain continental configurations having even warmer, wet-
ter atmospheres than an aquaplanet. Our results demonstrate that
different configurations of land, such as those obtained through past tec-
tonic movement or on rocky exoplanets, set planetary climate through
mechanisms beyond those involving surface albedo or orographic effects.

Keywords: Water Vapor, Climate, Continents, Land-atmosphere Interactions

1 Introduction

The distribution of continents on Earth’s surface alters both terrestrial and
global climate in myriad ways: by modulating surface-atmosphere exchange of
water and energy, shaping atmospheric circulation patterns, and delineating
ocean basins. Despite its importance, the fundamental role of continental dis-
tribution in setting Earth’s base-state climate remains poorly understood. In
this study, we explore how the distribution of land on Earth’s surface alters
global evaporation patterns and water vapor concentrations, with implications
for global mean surface temperatures and climate.

Physical differences between the land and the oceans alter the way the over-
lying atmosphere interacts with either surface. The land tends to be brighter,
drier, rougher, and have a lower heat capacity than the ocean (Budyko, 1961,
1969; Payne, 1972; Bonan, 2008; Jin et al, 2004; Wiscombe and Warren, 1980;
Sud et al, 1988; Cess and Goldenberg, 1981; North et al, 1983). Oceans can
redistribute energy in the climate system by moving heat laterally while the
land cannot (Loft, 1918; Richardson, 1980; Ferrari and Ferreira, 2011). Addi-
tionally, while water for evaporation is effectively unlimited in the oceans, the
availability of water for evaporation to the atmosphere varies widely over dif-
ferent land regions as a function of the local climate (Baldocchi et al, 1997).
Terrestrial evaporation and the surface supply of water varies seasonally and
behaves differently under different climates. Moreover, while the evaporation
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from the ocean is governed by atmospheric inputs (i.e. wind speed and radia-
tion), the evaporation from the land surface also varies with soil moisture and
physical properties of soil and vegetation that provide resistance to terrestrial
evaporation (Manabe, 1969; Bonan, 2008).

In slab ocean aquaplanet simulations, the organization of tropical rainfall,
the location of the extratropical jet, and the strength of the Hadley circula-
tion are all shown to be impacted by changes in atmospheric water vapor, sea
surface temperature, and solar insolation (Kirtman and Shukla, 2000; Barsugli
et al, 2005; Kang et al, 2008, 2009; Voigt et al, 2014). The influence of conti-
nental configuration on atmospheric water vapor remains largely unexplored;
however, recent work has shown that changes in terrestrial evaporation can
drastically alter global-scale climate by modifying the total amount of atmo-
spheric water vapor, a strong greenhouse gas (Laguë et al, 2021). In addition,
other aquaplanet studies with dynamical oceans illuminate the connection
between the distribution of meridional boundaries in the ocean and meridional
heat transport, demonstrating how different climates can develop as a result of
continental distribution (Enderton and Marshall, 2009; Ferreira et al, 2010).

In the modern continental configuration, changes in land surface proper-
ties generate large changes in both surface climate and global-scale circulation
(Shukla and Mintz, 1982; Charney et al, 1975; Davin et al, 2010; Laguë et al,
2019). Moreover, the complex orography of mountain ranges impacts atmo-
spheric circulation and generates large climate impacts over both land and
ocean regions (Queney, 1948; Eliassen and Palm, 1960; Manabe and Terpstra,
1974; Held, 1985; McFarlane, 1987; Held et al, 2002; Maroon et al, 2015; White
et al, 2017). While this study focuses on the impact of continental distribution
on temperatures, the impact of the location and size of continents on rainfall
has been explored extensively in monsoon literature (Dirmeyer, 1998; Yasunari
et al, 2006; Maroon and Frierson, 2016; Zhou and Xie, 2018; Hui and Bor-
doni, 2021). Continental extent also modulates the response of precipitation
to reduced terrestrial evaporation (Pietschnig et al, 2021).

Idealized modelling studies have further explored how the distribution of
land impacts temperature by allowing for albedo feedbacks (Barron et al, 1984)
as well as by altering the rate of CO2 weathering and thus the strength of the
CO2 greenhouse effect (Worsley and Kidder, 1991). Latitudinal variations in
albedo are driven directly by land distribution and indirectly through impacts
on clouds and sea-ice (Enderton and Marshall, 2009; Voigt et al, 2014). The
temperature at each latitude is largely modulated by the meridional heat trans-
port (Pierrehumbert, 2010). Previous theory argues that heat transports by
both the atmosphere and ocean, in turn, are largely insensitive to details of
the dynamics responsible for the transport of heat, but rather depend more
strongly on the mean planetary albedo and the equator to pole albedo gradi-
ent (Stone, 1978; Enderton and Marshall, 2009) as well as the evaporation and
condensation of water (Fajber and Kushner, 2021).
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The role of land distribution in modulating global climate has implications
for improving our understanding of climate in Earth’s geologic past. Recon-
structions of Earth’s continental configuration over the last several hundred
million years span a wide range of continental distributions, sometimes with
land clustered into supercontinents, sometimes with land spread widely across
the globe as in the modern era (Merdith et al, 2021). Simulations of paleocli-
mate include continental configurations vastly different to that of the modern
world to study the transition between glacial and interglacial periods (Hoff-
man and Schrag, 2002; Hoffman et al, 2017; Voigt et al, 2012), mass extinction
events (Penn et al, 2018), and climatic changes due to the opening and closing
of oceanic gateways (Straume et al, 2020).

We also expect to see different land arrangements on other planets. The
habitability of exoplanets is a topic of interest to the astrobiology community
(Méndez et al, 2021). The search for planets in the habitable zone hinges on
locating the distance from a star that would allow for the presence of liquid
water on a planet (a liquid environment is an expected requirement for life
and water is the most abundant, common liquid in the universe) (Baross et al,
2007). While it is common to find exoplanets within the habitable zone of a star
(Burke et al, 2015), whether or not those planets are actually habitable is dif-
ficult to determine (Kite and Ford, 2018). Planets with a vast range of masses,
sizes, and orbits have been detected (Seager, 2013), with an anticipated wide
range of variability in atmospheric mass and composition; the surface proper-
ties of those planets further modulate the planet’s habitability (Rushby et al,
2020). The presence of liquid water is often used to determine the habitabil-
ity of a planet (Seager, 2013); however, the distribution of hospitable surface
climates across a planet will depend on local surface climate.

In this study, we explore and compare the climates of eight Earth-like
planets, which differ only in their continental configuration. Land differs from
ocean in the simulations presented here in three key ways: it has a higher
albedo; it has a smaller heat capacity; and it has a limited capacity to hold
and evaporate water, with increased resistance to evaporation when the land is
not saturated. These differences alter the fluxes of water and energy between
the surface and the atmosphere over land vs. ocean, leading to changes in both
local surface climate and global-scale climate.

We show that the distribution of continents exerts a fundamental control
on global climate, even in a model without full representation of the differences
between land and ocean. We investigate how the distribution of land and
ocean alter planetary surface albedo, total absorbed shortwave radiation at
the surface, atmospheric water vapor and the water vapor greenhouse effect,
and atmospheric feedbacks resulting from differences in land vs. ocean heat
capacity. We conclude with a discussion of the role of land in modulating the
base-state climate of a planet, as well as the sensitivity of that climate to
changes in terrestrial evaporation.
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2 Methods

2.1 Model

In this study, we use Isca (Vallis et al, 2018), an idealized global circulation
model (GCM) to explore the climate of an Earth-like planet with various
idealized continental configurations. There is a seasonal cycle in insolation
(23.439° obliquity, 0 eccentricity) over a 360-day year. All simulations have
atmospheric CO2 fixed at 300 ppm. The model is run using a T42 horizontal
grid (∼2.8°) and 40 vertical levels.

The atmosphere uses moist dynamics and produces precipitation, but does
not represent the radiative effects of clouds. Therefore, we set the surface
albedo of both water and land to a higher value than in a model that represents
clouds, allowing for a more reasonable planetary albedo at the top of the
atmosphere (see below for more details). In the configuration of the model
used here, there are no albedo feedbacks from snow on land or sea ice. The
Rapid Radiative Transfer Model (RRTM) (Vallis et al, 2018; Clough et al,
2005; Mlawer et al, 1997) is used for atmospheric radiative transfer, and we
use the Simple Betts-Miller convection scheme (Betts, 1986; Betts and Miller,
1986; Frierson, 2007).

Analysis is primarily conducted using the Python programming language
(Van Rossum and Drake, 2009), particularly with the NumPy (Harris et al,
2020), SciPy (Virtanen et al, 2020), and xarray (Hoyer and Hamman, 2017)
packages.

2.2 Experiments

We run eight simulations, ranging from an all-ocean (Aqua) to an all-land
(LandWorld) planet (Fig. 1). For five of the simulations, 50% of the planet’s
surface is covered by different distributions of land, and ocean covers the
remaining 50% of the surface. TropicsLand has a single large continent in a
belt around the equator, from 30°S to 30°N, with two oceans over each polar
cap. CapLand is the inverse of this, with two continents capping the poles to
30°N/S, and a single large tropical ocean. NorthLand has a single large con-
tinent covering the whole northern hemisphere of the planet. EastLand has a
single large continent covering the planet from the south to north poles, but
only from 0-180°E longitude. In MeshLand, gridcells alternate between land
and ocean in a checker-board pattern. Each patch of land/ocean in MeshLand
is a single gridcell (roughly 2.8°). All simulations except RealLand have no
orography. The RealLand simulation uses a semi-realistic, simplified continen-
tal configuration with roughly 20% of the surface covered by land, and idealized
orographic representations of the Tibetan Plateau and the Rocky Mountains.
This continental configuration is a modified version of that in Saulière et al
(2012), and is produced using Isca’s idealized land generator function (Vallis
et al, 2018).
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Ocean Land

Fig. 1 Land/ocean masks for each continental configuration. Ocean is shown in white; land
is shown in grey. A small section of MeshLand (f) is enlarged to show the land/ocean tiling
pattern, where each tile is one gridcell (at roughly 2.8° resolution).

Land differs from ocean in these simulations through its albedo, smaller
heat capacity, fixed capacity to hold water, and increased resistance to evapo-
ration under dry soil conditions (table 1). In our simulations, land is 1.3 times
brighter than the ocean; the ocean has an albedo of 0.25 and the land an albedo
of 0.325. This is brighter than typical albedo values for ocean (Jin et al, 2004)
and (snow-free) land (Bonan, 2008), allowing the model to generate similar
global mean surface temperatures to our modern climate without the radiative
effects of clouds, which increase planetary albedo (Herman et al, 1980).

Table 1 Surface properties of land vs. ocean in all simulations

Albedo Capacity to
hold water
[mm]

Heat capacity
in equivalent
water depth
[m]

Ocean 0.25 Unlimitted 20
Land 0.325 1501 2

[1] Except in the LandWorld simulation, where water is allowed to accumulate beyond 150 mm.

The land can hold up to 150 mm of water at each point, with soil moisture
represented by bucket hydrology. Land is initialized with 100 mm of water
at every land gridcell. When the bucket is less than 3/4 full, the evaporative
resistance of the land surface increases linearly as a function of soil dryness.
When the bucket is more than 3/4 full, the resistance to evaporating water
from the land surface is the same as that over open water. Water in excess of the
bucket capacity is discarded as runoff; in effect, it is immediately returned to
the ocean. However, in LandWorld there is no ocean for runoff to be discarded
to, nor is there an oceanic water source to replenish the atmosphere with
water; thus, discarding runoff would result in a system that does not conserve
water. To address this, hydrology on LandWorld is modified to allow for the
formation of lakes: water is allowed to accumulate in excess of the 150mm
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bucket capacity, with the evaporative resistance the same as that of open water
until the amount of water in the gridcell drops back below 150mm, at which
point the standard bucket hydrology rules apply. The atmospheric circulation
of LandWorld rapidly transports all of the available moisture to the polar
regions where the land forms two “lakes” (see Laguë et al (2021) for discussion
of the formation of polar lakes on an all-land planet). Note that despite the
implementation of lakes in the LandWorld simulation, there is still a slow
leak of water vapor from the atmosphere which causes the simulation to cool
over time (Fig. A1); this is a known bug of Isca that is apparent in all-land
configurations (see https://github.com/ExeClim/Isca/issues/177) and is not
evident in the other simulations which can continuously replenish water vapor
from the oceans.

The aerodynamic roughness of the land and ocean are the same in these
simulations because the effects of surface roughness are outside the focus of
this study. In reality, land is typically more aerodynamically rough than the
ocean; the implications of this for climate are explored by past studies (Sud
et al, 1988; Davin et al, 2010; Laguë et al, 2019).

The ocean is represented with a 20m deep mixed layer ocean that allows
sea surface temperatures to evolve. No lateral heat transport is prescribed in
these simulations. The heat capacity of the land surface in these simulations
is 1/10 that of the ocean, and corresponds to that of a 2m deep mixed layer
ocean, a larger value than the heat capacity of typical land surfaces on the
modern Earth. The land and ocean heat capacities were selected based on
previous Isca simulations that generate realistic climatologies (Thomson and
Vallis, 2019; Geen et al, 2018).

Simulations are run for 20 years, with the first 4 years discarded to allow
for model spin-up. After 4 years, global mean surface temperatures and aver-
age terrestrial soil moisture are stable for all simulations except LandWorld,
which continues to lose water and cool throughout the length of the simula-
tion (Fig. A1). Over the last decade of the LandWorld simulation, global mean
temperatures decrease by roughly 1.5 K, but even without the water leak we
expect this simulation to be cold and dry because the atmospheric circulation
rapidly transports all the moisture to the polar regions where there is limited
energy for evaporation.

3 Results & Discussion

3.1 Overview of scenarios

The eight different continental configurations considered here generate a wide
variety of climates. The global average annual mean surface temperatures span
almost 15 K (Fig. 2), ranging from the coldest global mean surface temperature
on LandWorld (273.0 (± 1.2) K) to the warmest global mean surface temper-
ature closely shared among RealLand (286.7 (± 0.03) K) and CapLand (286.5
(± 0.1) K; numbers in brackets show ± the interannual standard deviation).

https://github.com/ExeClim/Isca/issues/177
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Table 2 Area in millions of km2 (global and land-only) with annual mean temperature
above 0°C (TANN > 0°C), and with annual mean precipitation above 300 mm/year
(PANN > 300mm/year). Also shown is the % of the total land on each planet meeting
these criteria, and the equator to pole temperature difference in K for each continental
configuration (noted separately for the northern and southern hemispheres for NorthLand
and RealLand, which are not symmetric about the equator).

Continental
Configuration

Total Area with
TANN > 0°C,
in [km2 × 106]

Land Area with
TANN > 0°C,
in [km2 × 106]

% of Land
Area with
TANN > 0°C

Eq to Pole
∆ T [K]

Total Area with
PANN > 300
[mm/year], in
[km2 × 106]

Land Area with
PANN > 300
[mm/year], in
[km2 × 106]

% of Land
Area with
PANN > 300
[mm/year]

Aqua 424 – – 33 478 – –
LandWorld 337 337 66 45 57 57 11
TropicsLand 378 260 100 34 273 64 25
CapLand 422 162 65 44 510 250 100
EastLand 396 193 76 43 322 85 33
MeshLand 416 205 80 36 492 244 96

NorthLand 406 188 74
46 (NH),
31 (SH)

432 189 74

RealLand 440 108 91
32 (NH),
29 (SH)

453 81 68

Over paleoclimate timescales, global mean temperatures are influenced by
many factors, including changes in atmospheric CO2 and ocean heat transport
(Tierney et al, 2020). Our results show that continental distribution—
independent of its impacts on CO2 or ocean circulation—could be a potentially
overlooked contributor to variations in past climate, as the range of surface
temperatures generated solely by altering the continental arrangement and
total amount of land produces changes in global mean surface temperature of
the same order of magnitude as the temperature range experienced on Earth
over the last 500 million years (Voosen, 2019).

The spatial distribution of surface temperatures varies between simulations
(Fig. 2). The strongest equator-to-pole annual mean difference in surface tem-
perature occurs over the continent in the NorthLand configuration, followed
by LandWorld and CapLand, while the smallest equator-to-pole temperature
difference occurs in both hemispheres of RealLand, followed by Aqua (Table 2).

Along with global temperature, the continental configurations also alter
atmospheric circulation and global mean precipitation, with configurations
with both more and less global mean rainfall than the modern Earth (Fig. 3).
The highest global mean rain value occurs in the CapLand continental configu-
ration (3.27±0.01 mm/day), with the most rain falling over the tropical ocean.
The lowest global mean precipitation values occur in Landworld (0.31 ± 0.16
mm/day).

All the continental configurations considered in this study can support
liquid water, a common criteria for planetary habitability (Seager, 2013).
However, the total area of land that would be hospitable to modern terres-
trial ecosystems varies substantially across these continental configurations.
To coarsely quantify the total land area in each simulation hospitable to mod-
ern day terrestrial ecosystems, we calculate the land area in each simulation
with the annual mean temperature above freezing (TANN > 0°C). We also
calculate the land area with annual mean precipitation above 300 mm/year
(PANN > 300mm/year), which roughly marks the divide between arid and
semi-arid ecosystems (Salem, 1989).
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Fig. 2 Maps of annual mean surface temperature [K]. Ocean regions are stippled (except in
MeshLand, where diagonal hatching is used to indicate the alternating land/ocean gridcells).
Global, land-only, and ocean-only area-weighted annual mean values are noted below each
map.

Fig. 3 Maps of annual mean precipitation [mm/day]. Ocean areas stippled (except in Mesh-
Land, where diagonal hatching is used to indicate the alternating land/ocean gridcells).
Global, land-only, and ocean-only area-weighted annual mean values are noted below each
map.

The spread in the total land area with TANN > 0°C across simulations
spans hundreds of millions of square kilometers (Table 2). RealLand has the
smallest total land with TANN > 0°C, but it also has the smallest amount of
land to begin with. Of the 50/50 land/ocean planets, CapLand and North-
Land have the smallest land area with TANN > 0°C, while TropicsLand and
MeshLand have the most. LandWorld, which has the largest total land area,
also has the largest amount of land above freezing in the annual average. How-
ever, both LandWorld and TropicsLand have large expanses of very dry land
(Table 2). Indeed, only 11% of the land on LandWorld and 25% of the land
on TropicsLand have PANN > 300mm/year. In contrast, 96% and 100% of
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the land in MeshLand and CapLand (respectively) exceed the 300 mm/year
precipitation threshold. Climate zone classifications provide a combined esti-
mate of temperature and precipitation impacts on ecosystem distribution;
Köppen-Geiger climate zones for each continental configuration explored here,
calculated following Kottek et al (2006), are shown in Fig. A2.

In the sections below, we examine the main drivers of this wide spread
in surface temperatures across the various continental arrangements, with
particular focus on how land distribution impacts surface evaporation and
atmospheric water vapor, the role of albedo, and feedbacks driven by dif-
ferences in land vs. ocean heat capacity. The appendices contain figures
showing transient and seasonal adjustments, meridionally resolved details, and
additional fields of interest.

3.2 Association of water vapor and the greenhouse effect
with surface temperatures

The various continental configurations explored here have a strong control
on surface evaporation, and thus on the concentration of atmospheric water
vapor. We find that the impact of the continental configuration on water vapor
is the dominant control driving the spread of global mean surface tempera-
tures across simulations, while differences in albedo and absorbed shortwave
radiation play a secondary role.

Continental configurations that allow for the largest globally averaged
latent heat flux (evaporation) produce the warmest global mean surface tem-
peratures (Fig. 4a). This contrasts with the intuition of evaporative cooling
leading to cooler surface temperatures. There is a strong linear relationship
(r2=0.87) between the global mean values of surface temperature and sur-
face latent heat flux. Configurations with high surface latent heat flux have
high total column water vapor (Fig. 4b). However, given the temperature-
dependence of water’s saturation vapor pressure, we must further explore this
relationship to understand the cause and effect.

The total amount and spatial distribution of water vapor, a strong green-
house gas, varies substantially across the continental configurations explored
here (Figs. 4b, 5). All other greenhouse gases are prescribed to be identical
across the simulations. We assess the effect of differences in water vapor con-
centration by approximating the strength of the greenhouse effect (following
Kiehl and Trenberth (1997)) as the difference between longwave (LW) radia-
tion emitted at the surface and emitted at the top of the atmosphere (TOA;
equation 1):

LWdiff = LW ↑
surface–LW

↑
TOA. (1)

Small values of LWdiff indicate a weak greenhouse effect while large values
indicate a strong greenhouse effect.

Across the continental configurations tested, there are a wide variety of cli-
mate states that fall along a common line relating evaporation, water vapor,
and surface temperatures. A strong linear correlation (r2 = .82) exists across
continental configurations between globally averaged latent heat flux and
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Fig. 4 Scatter plots showing the relationship between various global mean climate variables
across the eight continental configurations. All values are shown for the annual mean, with
each marker representing an individual continental configuration. The slope and r2 value of
a linear fit (dashed black line) is noted at the top of each panel, with slopes with a p-value
< 0.05 shown in bold.

LWdiff , where configurations with high surface evaporation—and high water
vapor (not shown)—have a stronger greenhouse effect (Fig. 4c). In the fol-
lowing sections, we discuss why each continental configuration leads to each
distinct distribution of atmospheric water vapor and surface temperatures.

3.3 Surface albedo differences alone do not explain
temperature spread

In our experimental planetary continental configurations, all planets that are
50% land and 50% ocean have the same globally averaged surface albedo. Yet,
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Fig. 5 Maps of climatological annual mean total atmospheric water vapor [kg] for each con-
tinental configuration. Ocean regions are indicated with black stipling, except in MeshLand
where gridcells alternate between land and ocean (indicated by checkered hatching, which is
not to scale with the model’s grid). Global, land-only, and ocean-only area-weighted annual
mean values are noted below each map.

for the five continental configurations that are half land and half water and
thus with identical surface albedos, there is a roughly 10 K spread in global
mean surface temperature (Fig. 4e-g).

Planets with more water (Aqua and RealLand) have an overall darker
surface while LandWorld has an overall brighter surface. Surface albedo deter-
mines how much of the shortwave radiation energy reaching the surface is
absorbed at the planetary surface, and can play a role in controlling surface
temperatures by modulating the total amount of energy available to the land
surface. Because the model we use does not represent the radiative effects of
clouds, we might expect surface albedo to have a stronger impact on top of
atmosphere albedo—and thus climate—than in the modern Earth. However,
we still see a large spread in the TOA albedo (as shown by the net shortwave
radiation flux at the TOA; Fig. 4i), resulting from changes in water vapor.

Along with the surface albedo, the amount of incident shortwave radia-
tion in a region also modulates how much shortwave radiation is available
for absorption at the surface. Given the absence of clouds in our simulations,
one might hypothesize for simulations with darker ocean near the tropics and
brighter land near the poles to absorb more shortwave radiation than simula-
tions with bright land in the tropics since more shortwave radiation is incident
at the top of the atmosphere in the tropics than in the high latitudes. However,
we find simulations with bright tropical land masses, including TropicsLand
and LandWorld, absorb relatively high amounts of shortwave radiation at the
surface (Fig. 4d,e). This apparent discrepancy between surface albedo and
absorbed shortwave radiation results from more shortwave radiation reaching
the surface in configurations with tropical land (Fig. 4h). Water vapor impacts
both shortwave and longwave radiative transfer through the atmosphere, and
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larger amounts of shortwave radiation reach the surface in TropicsLand and
LandWorld because the atmosphere is very dry.

Top of atmosphere albedo plays a central role in modulating global climate
(Donohoe and Battisti, 2011). As our simulations do not have clouds, top of
atmosphere albedo is instead a function of surface albedo and water vapor
concentrations. The large differences in water vapor across our simulations gen-
erate a spread in TOA albedo even among simulations with the same globally
averaged surface albedo (Fig. 4f; note that we plot absorbed SW at TOA as
a proxy for TOA albedo because all models have identical insolation). There
is a correlation (r2 = 0.82) between the globally averaged TOA absorbed SW
and global mean surface temperatures, with continental configurations which
absorb more net SW radiation at the TOA being generally warmer than con-
figurations which absorb less net SW radiation at the TOA. However, TOA
albedo alone does not explain the full spread in surface temperatures across
continenal configurations. For example, Aqua absorbs the most TOA SW (i.e.
has the lowest TOA albedo), but both RealLand and CapLand are warmer.

Though the largest difference in surface albedo is between Aqua and Land-
World, their difference in globally averaged shortwave radiation absorbed at
the surface is fairly small (Fig. 4e). That is, globally averaged surface albedo
does not correlate well with globally averaged absorbed surface shortwave radi-
ation. While the surface in LandWorld is much more reflective than the surface
in Aqua, the dry atmosphere in LandWorld allows a larger amount of solar
energy to reach the surface than the moist atmosphere of Aqua (Figs. 4j,k,
5b). Atmospheric water vapor both scatters and absorbs shortwave radiation
(even in the absence of clouds), leading to less shortwave radiation incident
upon the surface of Aqua than the surface of LandWorld.

For the 50/50 land/water planets, which all have the same surface albedo,
there is about a 10 W/m2 range in total absorbed shortwave radiation (SW)
at the surface (Fig. 4e). RealLand, which has a smaller total land area,
falls roughly in the middle of the spread. The reason for this non-intuitive
relationship between global mean surface albedo and global mean absorbed
shortwave radiation at the surface is the result of variations in incident short-
wave radiation at the surface between continental configurations, which are
due to differences in atmospheric water vapor concentrations. For example,
CapLand absorbs a relatively small amount of globally averaged shortwave
radiation despite the presence of dark ocean surface in the tropics. However,
CapLand has a large concentration of atmospheric water vapor in the tropics
(Fig. 5d) due to its tropical ocean. Because atmospheric water vapor scatters
and absorbs shortwave radiation, there is less shortwave radiation incident
upon the dark tropical surface in CapLand than there is in simulations with
drier atmospheres, and thus less shortwave radiation is absorbed despite the
dark tropical surface (Fig. 4j). TropicsLand, in comparison, has a much more
reflective tropical surface than CapLand, but absorbs more total shortwave
radiation because its dry atmosphere allows more solar energy to reach the
surface than the humid atmosphere of CapLand.
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Over sufficiently long timescales, the surface must balance the absorption
of shortwave energy either by heating up (and thus removing energy from
the surface as longwave radiation or sensible heat), or by evaporating water
(removing energy from the surface as latent heat). For land, this occurs on
comparatively short time scales due to its small heat capacity. The larger heat
capacity of the ocean allows it to absorb more shortwave energy before that
energy must be shed as latent heat, sensible heat, or longwave radiation. This
difference in heat capacity plays a critical role in explaining why CapLand is
both warmer and wetter than Aqua, which we discuss in section 3.6. In the
real ocean, heat can also be transported by the ocean circulation, but our
simulations have no ocean circulation by design. The sign of the relationship
between the amount of shortwave radiation absorbed at the surface and the
global mean surface temperature is the opposite of what one might naively
expect: the warmest climates are those that absorb the least amount of SW
radiation at the surface (Fig. 4d). Planets with less land (RealLand, Aqua)
fall above this line, while the planet with more land (LandWorld) falls below
this line.

LandWorld is colder than all the other continental configurations despite
the large amount of absorbed SW at the surface (Fig. 4d). CapLand, RealLand,
and Aqua span the full range of simulated globally mean absorbed shortwave
at the surface, yet these three continental configurations are the 3 warmest
planets, with similar global mean surface temperatures (roughly 285 K).

This disconnect between globally averaged surface albedo, absorbed SW at
the surface, and surface temperature implies that we cannot rely on the surface
albedo differences of land and water alone to explain the varied climates across
continental configuration. These simulations do not allow for cloud effects on
radiation; however, when cloud impacts on planetary albedo are taken into
consideration for the modern Earth, surface albedo contributes only a small
amount to the top of atmosphere albedo, which controls the total amount of
energy absorbed by the Earth system at any given location (Donohoe et al,
2013).

3.4 Longitudinal distribution of land cools by limiting
evaporation over the Eastland super-continent

The effect of continental arrangement on surface temperatures and climate
through water vapor vs. albedo is further demonstrated in the comparison of
MeshLand and EastLand. MeshLand and EastLand have the same amount of
land at each latitude. As such, they have the same latitudinal distribution of
surface albedo (or, equivalently, the same insolation-weighted surface albedo).
We find that differences in water vapor driven by differences in evaporation
are the dominant control making MeshLand a warmer planet than EastLand.

Despite MeshLand and EastLand having the same latitudinal distribution
of surface albedo, there is more shortwave radiation incident upon the sur-
face in Eastland, so more shortwave radiation is absorbed at the surface of
EastLand compared to Meshland (Fig. 6). If this were the dominant control
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on surface climate, we would expect EastLand to be warmer than MeshLand.
Instead, we see that MeshLand is warmer; this is a result of differences in
the strength of the water vapor greenhouse effect between the two continental
configurations.

Fig. 6 Zonal mean, annually averaged difference in downwards (yellow) and net absorbed
(black) shortwave radiation at the surface for EastLand - MeshLand.

The atmosphere in MeshLand has easy access to water everywhere, as each
land gridcell is adjacent to ocean. In contrast, the atmosphere over the con-
tinent in EastLand is quite dry (c.f. Fig. 5e,f and A3e,f), particularly in the
tropics where moisture that is advected onto the continent quickly precipitates
out (Fig. 3e). The humid atmosphere of MeshLand results in a strong water
vapor greenhouse effect, which drives the warmer temperatures of MeshLand
compared to EastLand. This difference in water vapor also explains the differ-
ence in incident shortwave radiation between the two simulations; however, as
noted above, this difference in shortwave radiation is not the controlling factor
on surface temperature differences between these simulations.

Each MeshLand “island” behaves most similarly to archipelagos like the
Maritime Continent, where the surrounding ocean provides moisture and the
islands provide vertical motion for rainfall (Kooperman et al, 2017). Mean-
while, the zonal extent of the super continent of EastLand limits the range of
moisture transport for precipitation to the interior, similar to Earth’s Asian
continent (though more extreme). The resulting dry lands and overlying dry
atmosphere of the EastLand super-continent cool the global climate.

In the idealized climate model used in these studies, there are no radia-
tive effects of cloud cover. Cloud radiative effects are an important part of
the climate system and can respond strongly to terrestrial processes (Cho
et al, 2018; Sikma and Vilà-Guerau de Arellano, 2019; Laguë et al, 2019; Kim
et al, 2020), but they also represent a large source of uncertainty (IPCC, 2013;
Zelinka et al, 2017). While the radiative effects of clouds would play a role in
the climate of all continental configurations considered here, they may be of
particular importance in the comparison of MeshLand to EastLand. Specif-
ically, we would expect MeshLand to be cloudy because its atmosphere has
ample access to water everywhere and the smaller heat capacity of land would
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result in larger sensible heat fluxes over the land than the neighbouring ocean
patches. This combination of vertical motion from sensible heating from the
land and a steady moisture supply from both the ocean and the wet land would
be conducive to the formation of cloud cover along the land/ocean boundary.
The entire planet of MeshLand is comprised of patchy islands—areas which, on
the modern Earth, enhance regional convection, cloud cover, and precipitation
(Cronin et al, 2015), such as occurs near the Maritime Continent.

The patchy nature of MeshLand’s continental distribution, and the result-
ing surface heat fluxes, is also reminiscent of regions of patchy deforestation
in the tropics. In the Amazon, deforestation on the scale of tens of km2 has
been shown to lead to increased cloud cover at the grass-forest boundary. This
deforestation generates regional circulations driven by sensible heating over
the relatively dry grassland and moisture flux from the relatively moist rain-
forest (Khanna and Medvigy, 2014). Further exploration of a MeshLand-like
planet, potentially with land patches of varying size, in a model that allows
for radiatively interactive cloud cover would be useful to explore the impact
of coastal land on cloud formation at different latitudes.

Another process that strongly impacts cloud formation and precipitation
over complex topography is orographic lift (Kirshbaum and Smith, 2009;
Houze, 2012; Maroon et al, 2015). Elevated orography can drive circulations
and alter free-tropospheric temperature and regional climate, but the physics
of this are complex and interact strongly with surface albedo (Hu and Boos,
2017). With the exception of RealLand, which has a simplistic representation
of some mountain ranges, orographic effects are not represented in these flat-
land simulations. Rather than exploring the orographic effects of continents
on climate, here we are specifically focused on the differences in land vs. ocean
heat capacity, albedo, and evaporative properties and their effect on climate.

3.5 Large tropical landmasses limit atmospheric water
vapor

The coldest three simulations (LandWorld, Northland, and TropicsLand) all
have relatively large amounts of tropical land cover. These simulations are
colder than the others at most latitudes in the annual mean (Fig. 2 and A4).
Even EastLand, in which half of the tropics are covered by land, is cooler and
drier than the simulations with open water across the entire tropics. Land can
affect the global water vapor concentration both through evaporation and by
changing the saturation vapor pressure of the atmosphere through changes in
air temperatures.

Albedo differences between land and ocean cannot explain why configura-
tions with large tropical land masses are cooler than other configurations. As
discussed in section 3.3, the total amount of shortwave radiation absorbed at
the surface is similar between these three simulations, and is higher than any
other planet except Aqua (Fig. 4). Low shortwave radiation absorption over
the tropical continents doesn’t explain the cooler global temperatures—thus
we examine differences in evaporation between simulations.



737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

Springer Nature 2021 LATEX template

Continental configuration controls the base-state water vapor... 17

Generally, land is a dryer surface with limited water holding capacity com-
pared to the ocean, and so serves to limit evaporation over the continents. The
evaporative demand of the atmosphere is high in the tropics because of the
warmer tropospheric air driven by high insolation. When there is ocean in the
tropics, this evaporative demand is supplied by an effectively infinite reser-
voir of surface water. However, when the tropics are covered with land, the
water on the land is quickly evaporated. While some of this moisture initially
rains onto the land surface, e.g. in a classic intertropical convergence zone that
occupies a narrow range of latitudes, tropical moisture export events (e.g. see
Knippertz and Wernli, 2010) move moisture off the tropical continent. Eventu-
ally the tropical land dries out except along the edges of the continent, which
experience seasonal precipitation.

The large latitudinal extent of the continent (between 30 degrees N-S)
inhibits near-surface atmospheric moisture transport into the continental inte-
rior from the polar oceans. That is, were the equatorial continent of a smaller
latitudinal extent, the equatorward component of the trade winds would travel
over ocean (evaporating water along the way) before making landfall, thus
bringing moisture onto the continent. With a latitudinally wide tropical con-
tinent, the near-surface winds travelling equatorward lie over land, thus the
air is much drier than if the wind was travelling over an ocean surface. This
results in most of the TropicsLand continent being dry, which means the tropi-
cal atmosphere cannot evaporate a large amount of moisture from the surface,
resulting in a dry tropical atmosphere (Fig. A5).

In the modern continental configuration, near-surface winds in the tropics
move moisture equatorward. However, in TropicsLand, the subsiding branch of
the Hadley cell doesn’t extend beyond the polar edge of the continent except
in local summer. A small amount of moisture is brought onto the continental
edge in summer (Fig. A5), but for the most part, surface winds in the low
latitudes in TropicsLand do not travel over the ocean surface and thus do not
transport moisture equatorward. In equilibrium, the large tropical land masses
considered in this study are very dry and serve as a cap to tropical evaporation
(Fig. 7).

Limited evaporation also means less latent cooling of the land surface,
which could warm these tropical continents. However, the reduction of the
water vapor greenhouse effect causes the continents to stay cool year round.
The atmosphere at all latitudes becomes depleted in atmospheric water vapor
(Fig. 5, A3). Instead of the surface temperature rising without evaporation,
the atmosphere, robbed of its main source of moisture by the land surface,
drys out and drives surface cooling via a reduced greenhouse effect. The
weak greenhouse effect from low atmospheric water vapor is evident in the
smaller magnitude of downwelling LW radiation at the surface in TropicsLand,
LandWorld, and over the continent in Northland (Fig. A6). The water vapor
feedback that operates in response to an arbitrary radiative forcing is expected
to further reduce surface temperatures, amplifying the cooling produced by
the initial land-induced drying.
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Fig. 7 Maps of annual mean soil moisture [mm]. Ocean areas are shown in light blue with
stippling (except in MeshLand, where diagonal hatching instead of stippling indicates the
alternating land/ocean gridcells). Note that all land regions have a maximum water-holding
capacity of 150 mm except LandWorld, which has been modified to allow for lake formation
to conserve water.

While there is ample water available for evaporation at higher latitudes—
e.g. over the polar oceans in TropicsLand, from high-latitude soil moisture
in NorthLand and Landworld, or from the southern hemisphere ocean in
NorthLand—the lack of energy for evaporation at higher latitudes and hori-
zontal mixing by the atmospheric circulation together maintain a dry tropical
atmosphere in these simulations. The mid-to-high latitude atmosphere in Trop-
icsLand does not contain nearly as much water vapor as the Aqua, CapLand,
MeshLand, or RealLand continental configurations (Figs. 5 and A3). The
southern hemisphere in NorthLand has much more water vapor than the north-
ern hemisphere, which is consistent with the warmer surface temperatures of
the southern hemisphere. The tradeoff between surface warming from reduced
evaporation and large-scale surface cooling from a reduced atmospheric water
vapor greenhouse effect is explored in detail for Northland in Laguë et al
(2021).

The colder climates seen in our simulations with extensive tropical land
cover may resemble Snowball Earth conditions, when tropical oceans were
hidden beneath sea glaciers (Hoffman et al, 1998), or during past geological
epochs when land was clustered into large tropical supercontinents (Chandler
et al, 1992; Merdith et al, 2021). Though not explored here, we note that
differences in ocean dynamics on paleoclimate timescales can also be large
drivers of differences in climate even with approximately similar continental
configurations (Chiang, 2009).

In addition to their dry atmospheres, the atmospheric circulations of Land-
World, TropicsLand, and NorthLand differ drastically from those of the other
continental configurations. The meridional streamfunctions of the other conti-
nental configurations qualitatively resemble those of the modern Earth (Fig. 8).
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However, for LandWorld, TropicsLand, and NorthLand, the dry tropical land-
masses are highly depleted of soil moisture, and as such the tropical Hadley
circulation is not dominated by moist dynamics, but rather by dry convec-
tion. The result is an overturning circulation which is vertically very short,
and resembles the Hadley circulation expected for Snowball Earth (Voigt et al,
2012; Voigt, 2013) or the shallow meridional circulations over deserts (Zhai
and Boos, 2017). In the case of NorthLand, this only applies to the northern
hemisphere.
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Fig. 8 Zonal mean meridional stream function annually averaged) for each continental con-
figuration. Contours are spaced at 0.2 × 1011 kg/s. Solid contours indicate positive values
(clockwise flow in this view) while dashed contours indicated negative values (counterclock-
wise flow).

3.6 Land heat capacity drives a seasonally asymmetric
feedback with evaporation and water vapor

In this section, we focus on the differences between CapLand and Aqua, to
explain why a planet that is 50% land covered is warmer and has more atmo-
spheric water vapor than an aquaplanet where the entire planetary surface is
ocean. The open tropical oceans in Aqua and CapLand result in these two sim-
ulations experiencing the most total evaporation and atmospheric water vapor
of all our simulations (Figs. 4, 5). Note that in terms of global mean surface
temperature, these simulations are the closest analogs to RealLand, which also
has high surface evaporation and total atmospheric water vapor compared to
other continental configurations.

The dark tropical ocean surface with effectively unlimited water for evap-
oration results in a moist tropical atmosphere for both CapLand and Aqua.
Initially, water evaporated over the lower latitude ocean falls as precipita-
tion on the equatorial edge of the polar continents of CapLand before it
is evaporated again and transported by transient eddies to higher latitudes.
Atmospheric moisture transport in CapLand provides enough water to main-
tain high soil moisture all year long (Figs. 7 and A7). We note, however, that
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(a) (b)

(c) (d)

Fig. 9 Difference (CapLand – Aqua) in zonally averaged (a) annual mean specific humidity
[g/kg] is shown in shading, with the climatological specific humidity [g/kg] from Aqua show in
white contours. (b-c) show the percent change specific humidity for (b) the annual mean, (c)
DJF, and (d) JJA in shading, with black contours showing climatological specific humidity
[g/kg] from Aqua. Cyan contours in (b-d) show the 100% change in specific humidity line.

both CapLand and Aqua experience temperatures below freezing at the high
latitudes during winter (Fig. A4), and thus we would expect the surface to be
frozen for part of the year—but these simplified simulations do not account
for the effects of sea ice or snow.

Despite its greater amount of land surface, CapLand is both warmer and
has more atmospheric water vapor at all latitudes than Aqua (Fig. 9). This is
particularly evident in the higher latitudes at higher levels of the troposphere,
where the atmosphere in CapLand has over 100%—and in places in excess of
500%—more water vapor (in terms of specific humidity) than Aqua. While
high soil moisture on the CapLand continents allows the surface to supply
water to the atmosphere, the CapLand continent still differs from the high
latitude ocean in Aqua in that it is brighter (higher albedo) and has a lower
heat capacity.

The difference in both mean annual temperature and water vapor can be
explained by the increased variation of seasonal temperature due to the land’s
lower heat capacity and a seasonal feedback through water vapor. Over land,
the smaller heat capacity results in a larger seasonal amplitude of temperature
than over ocean. CapLand has seasonally warmer local summers and cooler
winters over the polar continent than over the oceans at the same latitude in
Aqua (Fig. 10c,d). This increase in amplitude is expected; however, an increase
in the annual mean temperature is not.

To explain the observed increase in mean temperature, we must consider
two factors: (i) energy can be shed from the land surface not only as long-
wave radiation (LW), but also as sensible heat (SH) or evaporation/latent heat
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(a) (b)

(c) (d)

Fig. 10 Difference (CapLand – Aqua) in zonally averaged (a) annual mean air temper-
atures, (b) annual mean relative humidity, (c) DJF air temperatures and (d) JJA air
temperatures, from the surface to 100 hPa. Contours show the climatological values for each
field from the Aqua simulation.

(LH), and (ii) feedbacks due to water vapor through the greenhouse effect and
atmospheric energy transport. The seasonal imbalance between the local win-
ter and summer is a result of a feedback between surface evaporation and the
water vapor greenhouse effect.

During local summer, there is an increase in the total amount of radiative
energy flowing into the land surface (SW + LW) in CapLand (Fig. 11a-c).
This energy is shed from the land surface through a combination of increased
surface temperatures (as evident by increased LW↑ and SH), and increased
surface evaporation (Fig. 11d-f). This leads to more atmospheric water vapor;
because of the non-linearity of the Clausius Clapeyron relationship, the sum-
mer increase in specific humidity has a larger magnitude than the winter
decrease (Fig. 9). Due to the increase in atmospheric water vapor during local
summer, less incoming shortwave radiation reaches the surface (Fig. 11b). How-
ever, the increase in LW↓ into the surface is much larger than this decrease
in SW↓ (Fig. 11a-c). The increase in LW↓ is a result of higher atmospheric
temperatures and increased atmospheric water vapor, leading to a stronger
greenhouse effect (which also helps to increase atmospheric temperatures).

Increased LW↓ into the surface adds energy into the land system, increasing
the energy available for evaporation from the land. In CapLand, the soils
remain wet through the summer (because of atmospheric moisture transport
onto the continent; Figs. 7 and A7), supplying water to the hotter atmosphere
and completing the feedback loop.

This evaporation-water vapor-greenhouse feedback is only possible because
the continent in CapLand is very moist. Without available water on the polar
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Fig. 11 Hovmoller plots showing the seasonal cycle of the difference in zonally averaged
surface energy fluxes between CapLand and Aqua. The total radiative energy flux into the
surface is shown in (a), separated into the net absorbed SW in (b) and the downwelling
LW in (c). Panels d-f show the fluxes of energy leaving the surface, as latent heat flux
(evaporation) in (d), sensible heat flux in (e), and emitted longwave radiation in (f). Note
the difference in the scale of the color bars between panels.

continents, the small heat capacity of land would lead to warming but no
change in evaporation rates in summer. In this hypothetical dry polar land sce-
nario, the water vapor–greenhouse feedback would be much weaker or would
not occur at all. The moist polar continents buffer the summer surface temper-
ature response as excess energy from the strengthened greenhouse effect goes
into evaporating more water rather than into warming the surface, which fur-
ther strengthens the greenhouse effect. There is very little change in sensible
heat flux at the surface between CapLand and Aqua, except right along the
continental boundary (Fig. 11e).

The increased energy into the surface, increased evaporation, stronger
water vapor greenhouse effect, and the resulting increase in energy into the
surface are specific to summer, and create a seasonal imbalance in atmospheric
air temperatures and atmospheric water vapor between summer and winter
on CapLand vs. Aqua. The atmosphere over the continent in CapLand dur-
ing local winter is slightly drier than the atmosphere over Aqua’s ocean at the
same latitude. In contrast, during local summer the atmosphere over CapLand
is much more humid than the atmosphere over Aqua’s ocean at the same lat-
itude (Fig. 10). Concurrently, the magnitude of warming in summer is larger
throughout the atmospheric column than the magnitude of cooling in winter.
Only at low altitudes above the land surface is the winter cooling compara-
ble to the summer warming in CapLand vs. Aqua (Figs. 10, 11f). The small
heat capacity of land interacting with the seasonal cycle drives this feedback,
which is why summer temperatures are amplified in CapLand vs. in Aqua.
This summertime CapLand-specific feedback does not occur in winter because
evaporation is low in both CapLand and Aqua.
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The non-linear relationship between longwave radiation and surface tem-
perature could also introduce seasonally asymmetric temperature responses,
however in our simulations, this relationship fails to explain our results. If we
were to assume that the difference in insolation between summer and winter
must be removed from the land surface as longwave radiation through a change
in surface temperature (i.e. ignoring sensible or latent heat flux) and that the
change in insolation is equal and opposite in summer vs. winter, then by the
Stefan–Boltzmann law (LW ∝ σT 4 (Stefan, 1879)), a larger change in surface
temperature is needed during the cold season than is needed during the warm
season in order to produce the same anomalous magnitude of longwave radia-
tion. However, we do not find this in our simulations (Fig. 10c/d). Moreover,
the critical difference in the CapLand vs. Aqua climate at high latitudes is the
amplified amount of energy into the CapLand surface during local summer.

Past studies have explored similar idealized continental configurations to
CapLand and TropicsLand, with opposing conclusions on which configura-
tion makes for the warmer planet. Worsley and Kidder (1991) found that the
tropical continental configuration allows for greater removal of CO2 from the
atmosphere through weathering and thus results in a cooler climate due to a
diminished greenhouse effect. In contrast, Barron et al (1984) found the polar
continental configuration generates the cooler climate as it provides a surface
for high-latitude snow accumulation, which generates cooling through snow
albedo feedbacks. In this study, we identify a third mechanism of importance:
a planet with moist land capping the poles and a tropical ocean is warmer
than the planet with a tropical land belt and polar oceans because the con-
tinental arrangement exerts strong controls on evaporation and atmospheric
water vapor.

A critical difference between our simulations and those of Barron et al
(1984) and Worsley and Kidder (1991) is our inclusion of a seasonal cycle.
Without seasonality, the low heat capacity of land and the resulting sum-
mertime evaporation-water vapor-greenhouse effect feedback does not occur;
this summertime warming feedback is the primary driver for our warmer Cap-
Land simulation compared to Aqua. Moreover, our simulations do not allow
for changing albedo from clouds, snow, or sea ice, nor changes in CO2 due
to weathering. Macdonald et al (2019) find arc-continent collisions in the low
latitudes increase the removal of atmospheric CO2 through intensified chem-
ical weathering, a similar mechanism to that invoked by Worsley and Kidder
(1991). However, the weathering mechanism requires the tropical continent to
receive adequate moisture to allow for rock weathering. Yet our TropicsLand
simulation provides a potential counterexample to this, where a large tropical
land mass could have low weathering rates due to the dry atmosphere with
limited precipitation. While we do not simulate rock weathering impacts on
atmospheric CO2 in our simulations, we would expect weathering rates to be
lower over TropicsLand than, for example, MeshLand, which has much higher
precipitation rates over land. That is, the intensity of weathering in the low
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latitudes requires not only the presence of land, but also the presence of pre-
cipitation. However, if our tropical continent were smaller in extent, allowing
for more atmospheric water vapor and precipitation, the potential for CO2

removal from rock weathering would likely be higher.

4 Conclusions

The distribution of land exerts a first-order control on global climate by
modulating atmospheric water vapor concentrations. The eight idealized con-
tinental configurations considered here produced climates that span a range of
roughly 15 K in global mean surface temperatures. We find strong relationships
between surface evaporation, surface temperatures, and total atmospheric
water vapor across the simulations.

While the climate of each continental configuration considered here differs,
the mechanisms controlling these climates share many commonalities; in par-
ticular, each includes a feedback with the greenhouse effect of water vapor.
When large landmasses are positioned in high insolation areas like the tropics,
as is the case with TropicsLand, LandWorld, NorthLand, and EastLand, we do
not get hot desert worlds; instead, the relatively dry land leads to water vapor
depletion and a relatively cool climate. Our modern continental configuration
drives a climate that is among the warmest and wettest of the configurations
explored here, which is consistent with our findings that continental configu-
rations with large tropical ocean area have warm, moist atmospheres. While
there is land at low latitudes on modern Earth, there is also extensive ocean
area; the relatively wet atmosphere of RealLand suggests that the modern
Earth continental configuration does not limit tropical evaporation or tropical
atmospheric water vapor.

Also of great importance is the fact that the low heat capacity of a wet
continent at the poles in CapLand creates a larger seasonal cycle of tempera-
ture and generates a seasonal evaporation/water vapor feedback that amplifies
summer warming. This feedback creates a climate that is wetter and warmer
on a planet with 50% land cover than on an aquaplanet without continents.

Our framework allows us to isolate a new mechanism through which trop-
ical vs. extratropical land masses can modulate global-scale climate, and
also highlights the importance of continental distribution for global climate
through its influence on atmospheric water vapor. Further study is required
to determine the combined climate effects of tropical vs. extratropical land
on long-term atmospheric CO2 concentrations, surface albedo (through snow
cover), and top-of-atmosphere albedo (through cloud cover and water vapor
effects). How much these various effects may amplify, damp, or generate
interactions which could further feed back on global climate is necessary to
understand the total impact of continental distribution on global-scale climate.

The different continental configurations explored here are idealizations, but
provide possible analogues for past continental configurations (see Merdith
et al (2021)), or configurations on different water-land planets. We show how
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the distribution of land on a planet’s surface has a fundamental control on
surface climate by modulating atmospheric water vapor concentrations and
creating feedbacks between heat capacity and the seasonal cycle, with varia-
tions in the distribution of a fixed amount of land across the planetary surface
generating a substantial spread in global mean surface climate.
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Appendix A Spinup & Additional Fields of
Interest
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Fig. A1 Annual mean (a) global-mean surface temperature [K] and (b) land-mean soil
moisture (water in soil “bucket”, in [mm]) for each model simulation, showing equilibration
within 4 years of initialization for all simulations except LandWorld (dashed tan line). The
vertical dotted at year 4 marks the end of the spin-up period; model output up to and
including year 4 are discarded from the analysis in this study.

Fig. A2 Köppen-Geiger climate zones for each continental configuration, calculated fol-
lowing Kottek et al (2006).
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Fig. A3 Zonally averaged annual mean specific humidity from the surface to 100 hPa for
each continental configuration.

Appendix B Transient and seasonal
adjustments
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simulation in the annual mean (top), DJF (middle) and JJA (bottom).
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