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ABSTRACT: Mechanical forcing by orography affects precipitating convection across many trop-

ical regions, but controls on the intensity and horizontal extent of the orographic precipitation

peak and rain shadow remain poorly understood. A recent theory explains this control of precip-

itation as arising from modulation of lower-tropospheric temperature and moisture by orographic

mechanical forcing, setting the distribution of convective rainfall by controlling parcel buoyancy.

Using satellite and reanalysis data, we evaluate this theory by investigating spatiotemporal precip-

itation variations in six mountainous tropical regions spanning South and Southeast Asia, and the

Maritime Continent. We show that a strong relationship holds in these regions between daily pre-

cipitation and a measure of convective plume buoyancy. This measure depends on boundary layer

thermodynamic properties and lower-free-tropospheric moisture and temperature. Consistent with

the theory, temporal variations in lower-free-tropospheric temperature are primarily modulated by

orographic mechanical lifting through changes in cross-slope wind speed. However, winds di-

rected along background horizontal moisture gradients also influence lower-tropospheric moisture

variations in some regions. The buoyancy measure is also shown to explain many aspects of the

spatial patterns of precipitation. Finally, we present a linear model with two horizontal dimen-

sions that combines mountain wave dynamics with a linearized closure exploiting the relationship

between precipitation and plume buoyancy. In some regions, this model skillfully captures the

spatial structure and intensity of rainfall; it underestimates rainfall in regions where time-mean

ascent in large-scale convergence zones shapes lower-tropospheric humidity. Overall, these results

provide new understanding of fundamental processes controlling subseasonal and spatial variations

in tropical orographic precipitation.
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1. Introduction29

Mountains shape rainfall distributions in many of Earth’s tropical land regions, modifying the30

thermodynamic environment by interacting with large-scale winds or altering surface fluxes. With31

over 2.5 billion people living in mountainous areas and another 2 billion in lowland areas depending32

on mountain water resources (Viviroli et al. 2020), orographic precipitation is currently the main33

water source for over 55% of the world’s population, with a majority of that fraction located in34

the tropics. It is also the main source of energy for hydropower, which is the primary resource for35

renewable electricity generation globally, and a potential cause of dam failures when occurring in36

excess (Li et al. 2022).37

Orographic rainfall features large spatial gradients, with vastly different hydrological conditions38

upwind and downwind of ridges. In the tropics, strong precipitation gradients are widely observed39

along local orography in South and Southeast Asia, the Maritime Continent, and the northern and40

central Andes (Fig. 1). The spatial structure of orographic precipitation has been studied in various41

regions across the tropics, with examples including the Ethiopian Highlands (Van den Hende et al.42

2021), the Andes (Espinoza et al. 2015), the Western Ghats (e.g., Tawde and Singh 2015) and43

the Arakan Yoma range of Myanmar (e.g., Shige et al. 2017). The qualitative picture behind this44

spatial organization is widely known: mountains force low-level ascent on their upwind flanks,45

which, with sufficient moisture, drives condensation and precipitation (Smith 1979; Roe 2005).46

The subsiding downstream flow, conversely, is warm and dry. Yet this paradigm, which assumes47

layer-wise ascent and saturation, is unlikely to be quantitatively accurate in tropical regions where48

most rainfall stems from convection (Kirshbaum et al. 2018) and where even simple questions, such49

as what sets the upstream extent of orographic rainfall enhancement, have been debated (Smith50

and Lin 1983; Grossman and Durran 1984). This study aims to address this issue and related open51

questions (such as controls on rain shadow extent and the amplitude of rainfall maxima), taking52

several tropical regions as examples.53

In midlatitudes, column-integrated water vapor transport (IVT) has been proposed as a dom-57

inant control on orographic precipitation (Sawyer 1956; Smith 2019). Indeed, in the idealized58

picture of forced ascent over an orographic barrier, IVT modulates the condensation rate over the59

upwind slopes. Additionally, stronger IVT typically results in a smaller nondimensional mountain60

height (through both stronger winds and a smaller effective static stability), causing flow to ascend61
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Fig. 1. TRMM PR and GPM DPR near-surface precipitation, 500 m surface height level (thin brown contours),

and ERA5 wind vectors 100 m above the surface averaged over July (top) and November (bottom) from 2001 to

2020. See section 2 for details on the data products.
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rather than detour around mountains (Smith 1989; Kirshbaum and Smith 2008). Other controls62

on midlatitude orographic precipitation include mountain slope and temperature-mediated micro-63

physical effects (Kirshbaum and Smith 2008). The spatial organization of orographic precipitation64

in convectively stable flows has been understood through the influence of topography on vertical65

velocities in saturated flows, with a contribution from the downwind advection of hydrometeors66

(Smith and Barstad 2004, hereafter SB04).67

Orographic precipitation generally occurs in association with various types of disturbances, from68

frontal systems in midlatitude winter to deep convective systems in parts of the tropics (Houze69

2012). We illustrate these in Fig. 2, which shows instantaneous radar reflectivity from the70

Global Precipitation Measurement (GPM) Ku-band radar (Seto et al. 2021) for two cases. The71

first illustrates a winter frontal system over coastal mountains of British Columbia and features72

a horizontally wide, vertically shallow signal with a sloping bright band (visible between 30073

and 550 km at 2 km altitude in the vertical cross-section), characteristic of frontal ascent. In74

contrast, the Western Ghats case, during the summer monsoon, features smaller scale, stronger75

echoes reaching deeper heights (up to 10 km; note that summertime convection in and upstream76

of the Western Ghats is shallower than in the rest of the tropics, see Kumar and Bhat 2017).77
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Fig. 2. Near-surface radar reflectivity from the Ku-band GPM radar (top) and vertical cross-section of corrected

Ku-band reflectivity (bottom) for two overpasses : February 11th, 2015 (GPM orbit No. 005434) over the coast

range of British Columbia (left) and June 19th, 2014 (GPM orbit No. 001735) over the Western Ghats (right).

The black lines on the top panels show the location of the cross-sections on the bottom panels, with the L and R

marks corresponding to the left/right of the cross-sections. This figure was produced using the DRpy software

package (Chase and Syed 2022).
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While wide radar echoes are also observed in the tropics, such as in mesoscale convective systems78

(Houze et al. 2015), such systems reach deeper heights than winter midlatitude storms (because the79

tropical troposphere is nearly moist neutrally stable (Xu and Emanuel 1989), while midlatitudes80

are more stably stratified, preventing convection embedded in midaltitude cyclones from reaching81

deep heights).82

Tropical orographic precipitation has a more even temporal distribution than surrounding conti-89

nental or oceanic precipitation (Van den Hende et al. 2021; Espinoza et al. 2015; Sobel et al. 2011).90

Nevertheless, intraseasonal and interannual variability in orographic rainfall seems to be influ-91

enced by the classical tropical modes that regulate moist convection. Examples include the boreal92

summer intraseasonal oscillation (BSISO, Shige et al. 2017; Hunt et al. 2021), the Madden-Julian93

Oscillation (MJO, Bagtasa 2020) and large-scale interannual modes such as the El Niño-Southern94
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Oscillation and the Indian Ocean Dipole (Yen et al. 2011; Revadekar et al. 2018; Lyon et al. 2006;95

Smith et al. 2013). Hence, any successful theory for tropical orographic precipitation needs to96

address the question of how mountains interact with moist convection.97

Boundary-layer moist static energy and free-tropospheric temperature regulate moist convection98

by influencing column stability. Observations and simulations have shown that free-tropospheric99

water vapor also exerts a strong control on precipitation, consistent with the idea that entrainment100

of free-tropospheric air modulates plume buoyancy (e.g., Derbyshire et al. 2004). Tropical rainfall101

is thus jointly influenced by free-tropospheric temperature and moisture, and interacts with slower,102

balanced dynamics to eliminate positive perturbations in these quantities—a behavior termed103

lower-tropospheric quasi-equilibrium (QE, e.g., Raymond et al. 2015). The prominent role of lower-104

tropospheric moisture has been confirmed in observations of orographic convection at low latitudes105

(Hunt et al. 2021; Nelson et al. 2022). Beyond the lower-tropospheric thermodynamic environment,106

factors such as the wind profile—especially vertical wind shear, which one could expect to be107

important in the presence of mountain waves—should affect moist convective development (see,108

e.g., Robe and Emanuel 2001; Anber et al. 2014; Peters et al. 2022a,b). We do not consider such109

factors here.110

Ahmed et al. (2020) cast the observed dependence of tropical convection on the lower-111

tropospheric thermodynamic environment into a simple buoyancy-based framework. Precipitation112

is strongly controlled by a measure of plume buoyancy that takes into account the influences of113

instability and entrainment, and depends on boundary layer equivalent potential temperature as114

well as lower-free-tropospheric temperature and moisture. We recently posited (Nicolas and Boos115

2022, hereafter NB22) that mechanically forced orographic convection can be understood in this116

framework, with stationary mountain waves disturbing lower-free-tropospheric thermodynamics,117

in turn affecting precipitation. We developed a linear model for the spatial distribution of rainfall,118

combining orographic gravity wave dynamics with the linearized QE closure of Ahmed et al.119

(2020). That model assumes a simple background state that has horizontally uniform temperature120

and moisture profiles, with horizontally and vertically uniform wind. At first order, the temperature121

and moisture perturbations are dictated by vertical displacement in a mountain wave, which is in122

turn controlled by the topographic shape, cross-slope wind, and static stability. The normalized123

gross moist stability (e.g., Raymond et al. 2009) appears as a second-order control, because it mod-124
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ulates convective moisture relaxation. One goal of the present work is to evaluate to what extent125

this framework (extended to two horizontal dimensions) can explain observed spatial patterns of126

orographic tropical rainfall.127

More generally, this study explores the physical drivers behind the temporal variations and128

spatial structure of orographic precipitation around six tropical mountain regions: the Western129

Ghats (India), the western coast of Myanmar (Arakan Yoma mountain range), the eastern coast130

of Vietnam (Annam Range), the Malay peninsula, the Philippines, and the island of New Britain131

(Papua New Guinea). We justify the use of a lower-tropospheric buoyancy measure in quantifying132

daily orographic precipitation variability and explore the dominant controls on its components—133

both within the boundary layer and the lower-free-troposphere. We then explore to what extent134

time-averages of this buoyancy measure account for observed spatial patterns of rainfall, and test135

the QE-based linear theory of NB22 against observations.136

2. Data137

Two precipitation products are used. Seasonal averages (used in sections 1, 3, and 6) are obtained138

from monthly averages of near-surface precipitation rates from the Tropical Rainfall Measuring139

Mission Ku-band precipitation radar (TRMM PR 3A25, Tropical Rainfall Measuring Mission140

2021) for the 01/2001–03/2014 period and the Global Precipitation Measurement dual-frequency141

precipitation radar (GPM 3DPR, Iguchi and Meneghini 2021) for the 04/2014–12/2020 period,142

both on a 0.25◦ grid. In section 4, where we require daily resolution, we use the IMERG V06B143

precipitation dataset (Huffman et al. 2019), which combines satellite-based infrared and passive144

microwave measurements with rain gauge data to provide hourly estimates at 0.1◦ resolution.145

IMERG is known to suffer from biases in regions of complex topography relative to rain gauge146

measurements, but these biases are reduced when considering spatial averages (Pradhan et al.147

2022). We use daily precipitation averages at large spatial scales, and the regions over which we148

average consist of 45%–80% ocean points, where confidence in IMERG retrievals is higher.149

We evaluate the thermodynamic environment and horizontal winds from the ERA5 reanalysis150

(Hersbach et al. 2018), which provides hourly data at 0.25◦ resolution. Johnston et al. (2021)151

showed that moisture soundings from ERA5 had excellent agreement with satellite-based radio152

occultation retrievals in the tropics and subtropics. Proper evaluation of ERA5 lower-tropospheric153
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temperature is lacking; we note that Hersbach et al. (2020) showed improved 850 hPa temperature154

estimates (when compared to radiosondes) over ERA-Interim, especially in the past two decades.155

Unless otherwise specified, we use topography from the ETOPO1 global relief model (National156

Geophysical Data Center 2011; Amante and Eakins 2008), at 60 arc-second resolution.157

3. Selecting regions of mechanically forced tropical orographic rainfall158

To illustrate the physical drivers of tropical orographic precipitation, we select six regions in159

South Asia and the Maritime Continent. We focus on mechanically forced convection, a regime in160

which orographic forcing is felt through the forced uplift of impinging flow, by opposition to ther-161

mal forcing, where the diurnal cycle of heating over sloped terrain drives low-level convergence.162

The wind speed threshold marking the transition from thermal to mechanical forcing depends on163

various factors including static stability 𝑁 and mountain height ℎ𝑚. One quantity often used to164

characterize orographic flows is the nondimensional mountain height1, 𝑀 = 𝑁ℎ𝑚/𝑈, where 𝑈 is165

the cross-slope wind speed. Flows with 𝑀 < 1 tend to cross topography (rather than being blocked166

upstream), which may prevent the development of thermally forced circulations (Kirshbaum et al.167

2018). For moderately high mountains (500–1000 m) in the tropics, various studies have suggested168

that mechanical forcing dominates above about 5 m s−1 (Nugent et al. 2014; Wang and Sobel 2017).169

Accordingly, we selected six regions with a mean upstream wind (during the local rainy season)170

higher than 5 m s−1 and a visible orographic rain band. This sample is not an exhaustive represen-171

tation of tropical orographic rainfall, although we think it is quite representative of mechanically172

forced cases. These regions are outlined in Fig. 1, with close-up views of their topography and173

seasonal-mean rainfall and wind in Fig. 3. The rainfall maps have some visible noise because they174

are only based on TRMM and GPM radar overpasses, which have sparse temporal coverage.175

For each region, we analyze data over a 20-year period (2001–2020) during the local rainiest176

season (which also corresponds to a mechanically forced regime), defined below for each specific177

case. Two regions (Vietnam and the Philippines) experience a second rainfall peak in boreal178

summer on the other side of their mountain ranges, associated with reversed winds during the179

summer monsoon (see Fig. 1). Because the winds are not as strong then, the dominance of180

mechanical forcing cannot be clearly established, and we did not include these secondary rainy181

seasons in our analysis. In section 4, we analyze daily data averaged over the orographic rain bands;182

1𝑀 is also the inverse of a Froude number.
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Table 1. Key information about the regions studied. Here and in later tables, PNG refers to Papua New Guinea.

Region name
Rainy season

considered in this study

Nondimensional

mountain height

Western Ghats June-August 0.8

Myanmar June-August 0.8

Vietnam October-November 1

Malaysia November-December 0.5

Philippines November-December 0.3

PNG June-August 0.4

these rain bands are defined manually using rectangular boxes and outlined in red in Figure 3. We183

summarize key information about each region in Table 1, and describe these in detail hereafter.184

Three of these regions have their rainiest season in boreal summer (June-August). The Western185

Ghats, a mountain range on the west coast of peninsular India, form a kilometer-high barrier to186

the southwesterly monsoon flow. With 𝑀 ≃ 0.8 (measuring wind speed 500 km upstream of the187

coast and 100 m above the surface to avoid influences from surface friction and flow deceleration188

by topography), the Ghats fall within a clear mechanically forced regime, as attested by the small189

diurnal cycle of rainfall there (Shige et al. 2017). The dynamics of orographic precipitation in the190

Western Ghats have been the subject of several modeling studies (Smith and Lin 1983; Grossman191

and Durran 1984; Ogura and Yoshizaki 1988; Xie et al. 2006; Oouchi et al. 2009; Sijikumar et al.192

2013; Zhang and Smith 2018). These studies confirm that the presence of orography is crucial193

in producing the observed rain band, and (expectedly) that latent heating cannot be neglected194

in describing the orographic flow. Past literature has also discussed the location of the rainfall195

maximum upstream of the Western Ghats. While some studies initially suggested that it occurred196

upstream of the coastline (e.g., Xie et al. 2006), Shige et al. (2017) determined that it was positioned197

over the western slopes of the Ghats (consistent with Fig. 3).198

The Arakan Yoma mountain range, located along the coast of Myanmar, also interacts with199

the Asian summer monsoon (Oouchi et al. 2009; Wu et al. 2018). With maximum seasonal-200

mean precipitation values exceeding 30 mm day−1 upstream of the range, it is responsible for201

the strongest rain band (in terms of mean precipitation rate) on Earth in boreal summer. This202

precipitation maximum is located along the coast (see Fig. 3 and Shige et al. 2017). Compared203

to the Western Ghats, convection is deeper and of wider scale upstream of Myanmar, a fact that204
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Shrestha et al. (2015) associated with differences in lower tropospheric humidity. 𝑀 has a similar205

value around 0.8 there.206

The island of New Britain, in Papua New Guinea (hereafter PNG), is our third region of interest207

in boreal summer. The mountains are of modest height there (300 m when averaging across the208

island, although individual peaks exceed 2 km), but a strong precipitation band reaching 25 mm209

day−1 lies upstream of the island. Winds speeds around 8–9 m s−1 yield a nondimensional mountain210

height 𝑀 ≃ 0.4. Orographic rainfall in PNG has been the focus of a few studies (e.g., Biasutti et al.211

2012; Smith et al. 2013).212

The remaining three regions are associated with boreal autumn rainfall. The coast of Vietnam,213

east of the Annam range, receives most of its rainfall in October and November (Chen et al. 2012;214

Ramesh et al. 2021), with an onshore cross-slope wind of 8–9 m s−1 during this season (𝑀 = 1).215

The eastern coast of the Philippines experiences a late autumn precipitation peak (November–216

December) with a similar wind speed and 𝑀 = 0.3 (Chang et al. 2005; Robertson et al. 2011).217

Finally, the eastern half of the Malay Peninsula also receives most of its rainfall in November and218

December (Chen et al. 2013), similarly associated with mechanical orographic forcing (𝑀 = 0.5).219

4. Controls on daily variations of orographic rainfall225

In the tropics, mechanically forced orographic rainfall is subject to less temporal variability than226

rainfall over surrounding land and ocean. In particular, it has a weak diurnal cycle, as noted by227

Shige et al. (2017) in the Western Ghats and in Myanmar (see also Aoki and Shige 2024). This228

can be understood as resulting from daytime heating of the boundary layer being limited by the229

ventilation resulting from strong wind (e.g., Nugent et al. 2014). The distribution of daily rainfall230

within regions where mechanical forcing dominates is also more uniform, with less contribution231

from extreme days. This was noted by Espinoza et al. (2015) in the Central Andes and is confirmed232

for regions studied here (Table 2). Nevertheless, these regions still show substantial subseasonal233

rainfall variations. The goal of this section is to determine the factors governing these temporal234

variations of daily-mean precipitation.235
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Fig. 3. TRMM PR and GPM DPR near-surface precipitation, 500 m surface height level (thin brown contours),

and ERA5 wind vectors 100 m above the surface in six tropical regions, averaged over each region’s rainiest

season (see text) from 2001 to 2020. The red dashed boxes outline the orographic rain bands, which are analyzed

in section 4. The blue dashed boxes define the regions over which cross-slope IVT is averaged in Fig. 5. Here

and in later figures, PNG refers to Papua New Guinea.

220
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224

Table 2. Percentage of seasonal rainfall contributed by the rainiest days (defined as days and locations where

rainfall is above the 90th percentile), in the whole region and within the orographic rain band, for each region

studied. The rain bands are defined by the red dashed rectangles in Fig. 3.
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238

Region name Whole region Orographic rain band

Western Ghats 74 53

Myanmar 59 43

Vietnam 80 73

Malaysia 63 61

Philippines 76 66

PNG 70 55
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a. Dynamic and thermodynamic predictors of daily rainfall variations239

The canonical picture of orographic rainfall highlights the importance of the cross-slope vapor240

transport in governing rain rates (Smith 2019). In a saturated atmosphere ascending with velocity241

𝑤, the column-integrated condensation rate is242

𝐶 = −
∫ ∞

0
𝑤
𝑑 (𝜌𝑞sat)
𝑑𝑧

𝑑𝑧. (1)

The water vapor density can be approximated as decreasing exponentially with 𝑧, with a scale height243

𝐻sat. If u denotes the surface horizontal wind and ℎ the surface height, then 𝑤(𝑧 = 0) = u · ∇ℎ. In244

the simplest approximation where 𝑤 is vertically uniform, then245

𝐶 =

∫ ∞

0
(u · ∇ℎ) 𝜌𝑞sat

𝐻sat
𝑑𝑧 ≃ IVT · ∇ℎ

𝐻sat
, (2)

where IVT denotes the vertically integrated water vapor transport. Setting precipitation equal to253

the product of 𝐶 with a precipitation efficiency, one sees that in this so-called upslope model,254

it is proportional to the cross-slope IVT. This model has several shortcomings, including the255

assumption of a saturated atmosphere and the oversimplified vertical velocity parameterization.256

Nevertheless, it skillfully characterizes temporal rainfall variations in some midlatitude mountain257

ranges, as illustrated for the British Columbia coastal range in Fig. 4; despite some scatter, daily258

precipitation rates in winter are decently described by a linear relationship with cross-slope IVT259

(hereafter IVT⊥). Although the vertically uniform ascent model for vertical velocity (𝑤 = u · ∇ℎ)260

is crude, it captures the simple fact that vertical velocities in convectively stable orographic flows261

are controlled by cross-slope wind. Deviations from this simple picture, including effects of262

stratification, wind shear, and the specific dynamics of various types of weather systems, yield the263

scatter.264

In the tropics, where convective ascent is more important, one might expect other factors than273

cross-barrier winds to modulate ascent rates. Still, Bagtasa (2020) suggested that enhanced cross-274

slope winds in the Philippines associated with certain phases of the MJO favored rainfall in late275

autumn. Similarly, Shige et al. (2017) showed that rainfall in the Western Ghats and the Arakan276

Yoma range of Myanmar was in phase with the southwesterly wind strength modulated by the277

BSISO. This suggests that cross-slope winds, and perhaps cross-slope IVT, still are important278
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Fig. 4. Joint distributions of daily cross-slope IVT and precipitation in the coast range of British Columbia.

Precipitation is averaged over the orographic rain band (red box in the inset). Cross-slope IVT (defined as its

northeastward component) is averaged immediately upstream of the precipitation maximum (blue dashed box

in the inset). The black dashed line shows the best linear fit. The red dots represent conditionally averaged

precipitation over bins of width 80 kg m−1s−1 , with error bars representing a 95% confidence interval obtained by

bootstrapping. The inset shows climatological rain (IMERG) and 100 m wind (ERA5) averaged over November-

January.
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controls on orographic precipitation at low latitudes. Figure 5 (first and third columns) shows the279

joint distributions of IVT⊥ and precipitation, as well as precipitation conditionally averaged on280

IVT⊥2. While a positive relationship remains, it does not hold as strongly as in the midlatitude281

winter case shown in Fig. 4, with numerous dry days associated with strong IVT⊥. Therefore, we282

attempt to find another variable to characterize temporal variations in tropical orographic rainfall,283

starting with thermodynamic metrics that have been associated with convective rainfall.284

The question of what environmental factors set convective precipitation rates is at the heart of285

any theory of tropical atmospheric dynamics. The QE hypothesis (e.g., Emanuel et al. 1994) states286

that convection acts to deplete anomalies in convective available potential energy (CAPE). This287

description predicts the effect moist convection has on its environment, consuming instability and288

setting vertical temperature profiles close to moist adiabats. However, it alone does not provide289

2Throughout this manuscript, conditionally averaging A on B means averaging A over days where B is in a given range of values. Where
relevant, the ranges of values are defined in the figure captions.
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Fig. 5. Joint distributions of daily cross-slope IVT and precipitation (first and third columns, green colors)

and 𝐵𝐿 and precipitation (second and fourth columns, red colors). 𝐵𝐿 and precipitation are averaged spatially

over the rain band regions (red boxes in Fig. 3). IVT is averaged right upstream of the rain band regions (blue

boxes in Fig. 3). The cross-slope direction is defined as 70◦ (Ghats), 60◦ (Myanmar), 240◦ (Vietnam), 225◦

(Malaysia), 225◦ (Philippines), and 320◦ (PNG). Linear fits (for the IVT-precipitation relation) and exponential

fits (for the 𝐵𝐿-precipitation relation) are shown as dashed lines, with the associated coefficients of determination

in the legend. The black dots represent conditionally averaged precipitation over bins of width 80 kg m−1s−1 (for

IVT) and 0.03 m s−2 (for 𝐵𝐿), with error bars representing a 95% confidence interval obtained by bootstrapping.
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information on convective intensity or precipitation rates, given environmental conditions. One290

further development stems from the observed exponential dependence of precipitation rates on291

column moisture content (e.g., Bretherton et al. 2004). The physical roots of this dependence lie292

in the effect that entrainment of free-tropospheric air has on plume buoyancy.293
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Seeking a unified measure that would characterize rainfall across the tropics, Ahmed and Neelin294

(2018) derived an expression for a lower-tropospheric averaged plume buoyancy, that only depends295

on environmental temperature and moisture profiles. Dividing the lower atmosphere in two layers,296

a boundary layer (subscript 𝐵) and a lower-free-troposphere3 (subscript 𝐿), this expression reads297

(Ahmed et al. 2020)298

𝐵𝐿 = 𝑔

[
𝛼𝐵
\𝑒𝐵 − \∗𝑒𝐿
\∗
𝑒𝐿

−𝛼𝐿
\∗
𝑒𝐿

− \𝑒𝐿
\∗
𝑒𝐿

]
, (3)

where 𝑔 is the acceleration of gravity, \𝑒 is equivalent potential temperature (and \∗𝑒 its saturated299

value), and subscripts denote averages taken over respective layers. The weights 𝛼𝐵 and 𝛼𝐿 = 1−𝛼𝐵300

depend on the thickness of each layer and the assumed mass flux profile of the plume. We use301

𝛼𝐵 = 0.52 (as in Ahmed et al. 2020). The first term in (3) is a CAPE-like term, wherein the302

difference between boundary layer \𝑒 and lower-free-tropospheric \∗𝑒 provides a measure of moist303

convective instability. The second term describes subsaturation of the lower free troposphere,304

and quantifies the efficiency of entrainment at reducing buoyancy by drying the plume (hence the305

negative sign in front of it).306

When conditionally averaged on 𝐵𝐿 (at O(10 km) and hourly scale), precipitation is near-zero316

for negative values and strongly increases above zero buoyancy, a behavior reminiscent of its expo-317

nential dependence on column moisture. The strength of this precipitation-buoyancy relationship318

lies in its universality, as it holds over all tropical oceans, and, with slight modifications, over319

tropical land (Ahmed et al. 2020). Using conditional averages reduces the scatter in precipitation320

rates associated with a given value of 𝐵𝐿 . This spread can be due to both stochasticity or ignored321

physical effects, e.g., higher-order dependencies on the vertical structure of environmental temper-322

ature and moisture, or wind shear effects. Figure 5 (second and fourth columns), shows the joint323

distribution of precipitation and 𝐵𝐿 for each region, using daily-mean data spatially averaged over324

the rain bands (red boxes in Figure 3). Spatially averaging the nonlinear rainfall-𝐵𝐿 relationship325

is expected to smooth out the sharp increase around zero buoyancy; hence, we show exponential326

fits (rather than ramp fits of the form max(0, 𝑎𝐵𝐿 + 𝑏)) with the joint distributions. We also show327

conditional averages at various 𝐵𝐿 values. 𝐵𝐿 is more skillful than IVT⊥ at capturing daily rainfall328

3Here, the boundary layer is defined as between the surface and 900 hPa, and the lower-free-troposphere between 900 hPa and 600 hPa. We chose
these definitions (over using a fixed-depth boundary layer and variable-depth lower free troposphere) so that lower-free-tropospheric averages are
not affected by surface elevation changes. Points where the surface pressure is lower than 900 hPa are masked out of all analyses. These represent a
small fraction of each domain, and can be visualized as the white shaded regions in Figure 11. The analyses are robust to the exact definition of the
boundary layer top: changing it to 875 or 925 hPa does not significantly affect any of the results presented. Moreover, daily variations in boundary
layer height (as determined by ERA5) are modest in the rain bands analyzed in Figs. 5-10, with standard deviations lower than 15 hPa.
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variations in all regions except perhaps Myanmar, where the range of 𝐵𝐿 is narrower than in other329

regions (during the summer monsoon, the coast of Myanmar is in a precipitating state most of the330

time). It is notable that 𝐵𝐿 characterizes rainfall with similar accuracy in regions that have different331

convective vertical structures (Kumar and Bhat 2017; Shige and Kummerow 2016). This indicates332

that 𝐵𝐿 is not only suitable to quantify rainfall from deep convection, but that it is also an adequate333

measure in regions where precipitation tops frequently lie around 4 to 6 km. We next decompose334

variations in 𝐵𝐿 into contributions from its components to understand the origins of precipitation335

variability in tropical orographic regions.336

𝐵𝐿 is a function of three variables: \𝑒𝐵, \𝑒𝐿 , and \∗
𝑒𝐿

(eqn. 3). Alternatively, following Ahmed337

et al. (2020), it can be viewed as a function of \𝑒𝐵, 𝑇𝐿 and 𝑞𝐿 , where 𝑇 is temperature and 𝑞338

denotes specific humidity, hereafter in temperature units (i.e. multiplied by the ratio of the latent339

heat of vaporization of water 𝐿𝑣 to the heat capacity of air at constant pressure 𝑐𝑝). In this340

description, plume buoyancy is affected by boundary layer \𝑒 (which affects lower-tropospheric341

stability), lower-free-tropospheric temperature (affecting both stability and lower-free-tropospheric342

subsaturation) and lower-free-tropospheric moisture (affecting only the subsaturation component).343

To evaluate the sensitivity of 𝐵𝐿 to each component, we linearize its expression:344

𝛿𝐵𝐿 =
𝜕𝐵𝐿

𝜕\𝑒𝐵
𝛿\𝑒𝐵 +

𝜕𝐵𝐿

𝜕𝑇𝐿
𝛿𝑇𝐿 +

𝜕𝐵𝐿

𝜕𝑞𝐿
𝛿𝑞𝐿 (4)

where 𝛿 denotes a deviation from a time-average, 𝜕𝐵𝐿/𝜕\𝑒𝐵 = 𝑔𝛼𝐵/\∗𝑒𝐿 , and the expressions for345

𝜕𝐵𝐿/𝜕𝑇𝐿 and 𝜕𝐵𝐿/𝜕𝑞𝐿 are given in Ahmed et al. (2020) (these expressions were derived from a346

simplified version of 𝐵𝐿 that is very close to the one employed here). Here, we use fixed values of347

𝜕𝐵𝐿/𝜕\𝑒𝐵 = 0.014, 𝜕𝐵𝐿/𝜕𝑇𝐿 = −0.058, and 𝜕𝐵𝐿/𝜕𝑞𝐿 = 0.014, which have little dependence on348

the specific base state considered.349

Figure 6 examines the contribution of each term on the right-hand-side of (4) to variations in350

𝐵𝐿 , over the Western Ghats and PNG. For example, to estimate the contribution of \𝑒𝐵 variations351

to 𝐵𝐿 variations, we fix 𝑇𝐿 and 𝑞𝐿 and estimate the 𝐵𝐿 perturbations that would have occurred352

if only \𝑒𝐵 had varied, i.e. (𝜕𝐵𝐿/𝜕\𝑒𝐵)𝛿\𝑒𝐵. We regress 𝛿𝐵𝐿 on this measure and show the353

joint distribution of both quantities (top panels), then repeat the same analysis with (𝜕𝐵𝐿/𝜕𝑇𝐿)𝛿𝑇𝐿354

(middle panels) and (𝜕𝐵𝐿/𝜕𝑞𝐿)𝛿𝑞𝐿 (bottom panels). It is apparent from these univariate linear355

regressions that 𝑞𝐿 dominates 𝐵𝐿 variations in both regions. This is true even though 𝐵𝐿 is356
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Fig. 6. Joint distributions of buoyancy anomalies 𝛿𝐵𝐿 and their contribution from \𝑒𝐵 anomalies (first row),𝑇𝐿

anomalies (second row), and 𝑞𝐿 anomalies (third row), for two regions illustrating different regimes: the Western

Ghats (left) and PNG (right). For each plot, 𝛿𝐵𝐿 is also regressed on the individual contribution (𝜕𝐵𝐿/𝜕𝑉)𝛿𝑉

where 𝑉 = \𝑒𝐵,𝑇𝐿 , or 𝑞𝐿 . Black dashed lines show the best fit linear regression.

307

308

309

310

four times more sensitive to 𝑇𝐿 (|𝜕𝐵𝐿/𝜕𝑇𝐿 | ≃ 4𝜕𝐵𝐿/𝜕𝑞𝐿). Indeed, variations of 𝑞𝐿 are less357

constrained than those of 𝑇𝐿: lower-free-tropospheric temperature anomalies are quickly smoothed358

in the tropics by gravity waves, resulting in a state of weak temperature gradients (e.g., Sobel359

et al. 2001). Over the Western Ghats, 𝑇𝐿 variations still account for 28% of the variance in 𝐵𝐿 ,360

while \𝑒𝐵 variations do not correlate with 𝐵𝐿 . In PNG, the converse picture holds. Figure 7361

shows the coefficients of determination (𝑅2) of the regression lines that appear in Fig. 6, extended362

to all regions. In addition, we perform bivariate linear regressions of 𝛿𝐵𝐿 against \𝑒𝐵 and 𝑇𝐿 ,363
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Fig. 7. Coefficients of determination (𝑅2) from linear regressions of 𝛿𝐵𝐿 against its individual contributions

from \𝑒𝐵, 𝑇𝐿 , and 𝑞𝐿 anomalies (see Fig. 6), as well as joint contributions from pairs of these variables. Note

that despite differences in the univariate 𝑅2s across regions (with \𝑒𝐵 anomalies accounting for more variance

in 𝐵𝐿 than 𝑇𝐿 anomalies in a univariate sense), the (𝑇𝐿 ,𝑞𝐿) pair explains the highest fraction of variance in 𝛿𝐵𝐿

in all regions.

311

312

313

314

315

\𝑒𝐵 and 𝑞𝐿 , and 𝑇𝐿 and 𝑞𝐿 (we omit 𝜕𝐵𝐿/𝜕\𝑒𝐵 and other prefactors as these only change the364

regression coefficients, and not the 𝑅2). From the univariate regressions alone, there seem to be365

two types of behavior: one where buoyancy variations are controlled by lower-free-tropospheric366

thermodynamic quantities (the Western Ghats and Myanmar), and the other where boundary layer367

\𝑒 and lower-free-tropospheric moisture set these variations (Vietnam, Malaysia, the Philippines,368

and PNG). However, the bivariate regressions show that in all regions, 𝑇𝐿 and 𝑞𝐿 account together369

for the highest fraction (over 85%) of the variance in 𝐵𝐿 . Consistently, the rest of this section370

focuses primarily on the factors governing 𝑇𝐿 and 𝑞𝐿 variations.371

An important caveat is that the three variables that control variations in lower tropospheric372

buoyancy 𝐵𝐿 are not independent of each other. In QE theory, convection rapidly reduces CAPE373

variations, tying free-tropospheric saturation equivalent potential temperature \∗𝑒 to subcloud layer374

equivalent potential temperature \𝑒𝐵. Thus, one expects \𝑒𝐵 and 𝑇𝐿 to exhibit substantial corre-375

lation. Indeed, correlation coefficients between daily \𝑒𝐵 and 𝑇𝐿 averaged over the orographic376

precipitation bands vary between 0.7 and 0.9 in all regions. However, this relationship only indi-377

cates that \𝑒𝐵 and \∗
𝑒𝐿

covary, and does not provide insight on 𝐵𝐿 variations because 𝐵𝐿 depends378

on \𝑒𝐵 − \∗𝑒𝐿 , as in (3). Additionally, turbulent exchange between the subcloud layer and the lower379
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Table 3. Correlations between daily precipitation (P) and the three quantities affecting plume buoyancy (\𝑒𝐵,

𝑇𝐿 and 𝑞𝐿), and between daily SST and boundary layer equivalent potential temperature \𝑒𝐵. Precipitation, \𝑒𝐵,

𝑇𝐿 and 𝑞𝐿 are averaged over the red boxes in Fig. 3, and SST is averaged over the ocean part of each box.

389

390

391

Region name P - \𝑒𝐵 P - 𝑇𝐿 P - 𝑞𝐿 SST-\𝑒𝐵

Western Ghats 0.19 -0.15 0.56 0.80

Myanmar 0.16 -0.18 0.30 0.53

Vietnam 0.23 0.03 0.53 0.61

Malaysia 0.17 -0.18 0.51 0.69

Philippines 0.12 -0.06 0.50 0.56

PNG 0.15 -0.15 0.51 0.60

free troposphere produces smaller correlations (0.3–0.6) between daily \𝑒𝐵 and 𝑞𝐿 variations. 𝑇𝐿380

and 𝑞𝐿 are essentially uncorrelated across all regions.381

To link this analysis back to precipitation variations, we compute correlations between daily382

values of rainfall and each of \𝑒𝐵, 𝑇𝐿 , and 𝑞𝐿 upstream of each of the mountain ranges studied383

(Table 3). These correlations are only a crude measure of the association of each component384

with precipitation, given that the precipitation-buoyancy relationship is expected to be nonlinear.385

Nevertheless, a few of the observations made above hold: 𝑞𝐿 has the strongest association with386

precipitation, 𝑇𝐿 anomalies are negatively associated with precipitation (recall that 𝜕𝐵𝐿/𝜕𝑇𝐿 < 0),387

and \𝑒𝐵 has a weak positive association with rainfall.388

b. Controls on daily \𝑒𝐵 variations392

In this work, the boundary layer extends between the 900 hPa level and the surface—which393

loosely corresponds to the subcloud layer. Boundary layer \𝑒, or equivalently subcloud entropy, is394

set by exchanges with the surface and the lower free troposphere, with a small contribution from395

radiative cooling (Emanuel et al. 1994). Entropy exchanges at the top of the boundary layer are396

twofold: one contribution being in the form of quasi-continuous turbulent mixing across the top of397

the layer, the other one arising from penetrative convective downdrafts. Over ocean, sea-surface398

temperature (SST) is often the dominant quantity affecting subcloud entropy (e.g., Lindzen and399

Nigam 1987). Because the orographic rain bands of interest in this section are in close proximity400

to the sea, one might expect SSTs to exert a strong control on \𝑒𝐵. We verify this fact in Table 3:401
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Fig. 8. Boundary layer horizontal wind regressed on lower-free-tropospheric temperature (𝑇𝐿 , averaged in

the dashed boxes). The result is multiplied by −1 so that upslope flow is associated with negative temperature

perturbations. The color shading shows seasonal-mean 𝑇𝐿 . Arrows are masked where neither the 𝑢 wind

regression nor the 𝑣 wind regression satisfy the false discovery rate criterion (Wilks 2016) with 𝛼 = 0.01.

408

409

410

411

SST strongly correlates with \𝑒𝐵 at the daily scale, with correlation coefficients between 0.5 and402

0.8 in all regions.403

Other factors such as surface wind speed variations or convective downdrafts contribute to404

variations in \𝑒𝐵 on shorter timescales than SST changes. Because there is no clear influence of405

orographic mechanical forcing on any of these factors, we do not delve deeper into this topic.406

c. Controls on daily lower-free-tropospheric temperature variations407

Topographically forced gravity waves carry temperature perturbations. In the canonical picture412

of mechanical orographic forcing, a mountain of height ℎ𝑚 is placed in a stratified atmosphere (with413

buoyancy frequency 𝑁) with a uniform background horizontal wind𝑈. When the nondimensional414

mountain height 𝑁ℎ𝑚/𝑈 ≲ 1, the flow ascends over the mountain, creating (by adiabatic cooling)415

a cold anomaly in the lower-free-troposphere upstream. The stronger the wind, the deeper the416
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ascent region, hence the colder the anomaly. In the case of an idealized ridge of height 1 km, the417

sensitivity of the temperature perturbation to the impinging wind is (see Appendix)418

𝜕𝑇 ′
𝐿

𝜕𝑈
≃ −0.2 K/(m s−1). (5)

We now seek to verify whether 𝑇𝐿 variations in our regions have patterns that are consistent with419

this picture. Figure 8 shows time-mean 𝑇𝐿 maps in all six regions. Cold anomalies (of around420

0.5 K) are visible in each region’s rain band, indicated by poleward (in the Western Ghats and421

Myanmar) or equatorward (in Vietnam, the Philippines and PNG) excursions of isotherms upstream422

of and above the topography. These anomalies are consistent with the idea of upstream cooling423

by orographic lifting in the mean state. To study temporal variations in the strength of this cool424

anomaly, we average 𝑇𝐿 upstream of each mountain range to obtain daily timeseries. Because the425

mountains are of modest height in each region, we expect mountain waves to be dominantly affected426

by winds in the lowermost kilometer of the troposphere. We thus average horizontal winds within427

the boundary layer and regress them on the 𝑇𝐿 timeseries at each location. The resulting wind428

vectors are multiplied by −1 so that onshore cross-slope flow corresponds to negative temperature429

perturbations, and shown in Fig. 8. If our simple estimate (5) were to hold, regressed winds would430

have a magnitude around 5 m s−1K−1 for a 1 km-high mountain.431

The wind regressions are directed onshore and cross-slope in each region, which is again consis-435

tent with the idea that 𝑇𝐿 is modulated by the strength of stationary mountain waves. Furthermore,436

the magnitude of the regression vectors upstream of each region (except Myanmar) is around 2–5 m437

s−1K−1, consistent with (5). It is apparent from Fig. 8 (especially in the Philippines, Vietnam, and438

PNG) that cold anomalies are also associated with up-temperature-gradient winds: background439

temperature gradients are not everywhere small in these tropical regions, and accordingly cooling440

can happen through horizontal advection.441

d. Controls on daily lower-free-tropospheric moisture variations442

Given the dominant control 𝑞𝐿 exerts on lower tropospheric buoyancy (Fig. 6), understanding443

drivers of its temporal changes is key to understanding rainfall variations. In the same way444

they bear temperature anomalies, mountain waves carry moisture perturbations through vertical445

displacements in a background profile of specific humidity. Rising air upstream of a mountain446
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Fig. 9. Boundary layer horizontal wind regressed on lower-free-tropospheric moisture (𝑞𝐿 , averaged in the

dashed boxes, in temperature units). The color shading shows seasonal-mean 𝑞𝐿 . Arrows are masked using the

same criterion as in Fig. 8.

432

433

434

moistens the lower-free-troposphere, while downstream subsidence dries it. The magnitude of this447

effect is estimated using linear mountain wave theory in the Appendix. In this idealized picture,448

the sensitivity of the upstream moisture perturbation to the cross-slope wind is449

𝜕𝑞′
𝐿

𝜕𝑈
≃ 0.5 K/(m s−1). (6)

Once again, this effect neglects any convective response: mountain-induced𝑇𝐿 and 𝑞𝐿 perturbations450

result in enhanced convection, which, in turn, dries the troposphere. A framework to understand451

the response of convection to thermodynamic perturbations in a mountain wave is presented in452

section 6. Solving for 𝑞′
𝐿

in this framework reduces the sensitivity in (6) by about half.453

In the absence of horizontal gradients in the background moisture profile, 𝑞𝐿 perturbations454

would be dominantly due to the time-mean ascent perturbation imposed by the terrain, which455

is well described by stationary mountain waves for a mechanically forced regime (NB22). In456
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Earth’s tropics however, water vapor is far from horizontally homogeneous. This is apparent in457

Fig. 9, where color shading represents the time-mean 𝑞𝐿 in each region: horizontal moisture458

gradients are much stronger than 𝑇𝐿 gradients. Although the impact of orography on the mean 𝑞𝐿459

distribution is less apparent compared to 𝑇𝐿 (because of the stronger background 𝑞𝐿 variations),460

it seems to be associated with moisture contours deviating southward in Myanmar and northward461

in the Philippines (corresponding to positive anomalies); a local maximum is also present over462

PNG. Given the background horizontal moisture gradients and the moisture perturbations around463

orography in Fig. 9, one might expect variations in 𝑞𝐿 to be influenced by both winds along the464

background moisture gradient and winds across orographic slopes.465

The vectors in Fig. 9 show horizontal winds regressed on upstream-averaged 𝑞𝐿 . In the Western466

Ghats and Myanmar, moist perturbations are mostly associated with cross-slope winds, following467

the theoretical picture of mechanical forcing. The magnitude of the regressions (1–2 m s−1K−1) is468

somewhat smaller than expected from (6); one would expect 2–4 m s−1K−1 when accounting for469

the correction due to convective feedback (see above). The fact that both negative 𝑇𝐿 and positive470

𝑞𝐿 perturbations—hence positive 𝐵𝐿 perturbations—are favored by cross-slope winds in the Ghats471

and Myanmar explains why IVT⊥ characterizes precipitation better there than in other regions472

(Fig. 5).473

In Vietnam, Malaysia, and the Philippines, regressed winds have little cross-slope flow compo-474

nent: they are mostly directed down mean moisture gradients. In these regions, moistening of the475

lower free troposphere thus seems to be more effectively attained through large-scale horizontal476

moisture advection than mechanical forcing of upslope flow. This result contrasts with the intu-477

itive view that mechanically forced orographic precipitation and accompanying lower-tropospheric478

humidity variations are mostly controlled by forced ascent, i.e. by the strength of upslope flow.479

It shows that, despite its importance in setting the time-mean rainfall pattern, orographic forcing480

might be less important than large-scale horizontal moisture advection in setting the daily vari-481

ability of precipitation in these regions. Such control of precipitation by large-scale advection of482

moisture in the midtroposphere was noted over the Arabian sea during the summer monsoon (Hunt483

et al. 2021), and in northern Australia during its monsoon season (Xie et al. 2010).484

The regression pattern in PNG is neither cross-slope nor down-moisture-gradient. Indeed, the485

orographic rain band of PNG corresponds to a local maximum in lower-tropospheric specific486
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Fig. 10. Boundary layer horizontal wind regressed on precipitation averaged in the dashed boxes. The color

shading shows precipitation regressed on this same index. Masked arrows and white shading indicate that the

regressions do not satisfy the false discovery rate criterion with 𝛼 = 0.01.

496

497

498

humidity. Although we do not have a precise explanation for this pattern of wind anomalies, one487

may speculate that it is associated with large-scale upward motion in the South Pacific convergence488

zone (SPCZ), where PNG is located.489

We note that moistening of the lower troposphere is not solely controlled by horizontal winds, and490

that any source of uplift, such as convectively coupled waves or cyclonic disturbances, will affect491

𝑞𝐿 . In this section we focused on horizontal wind control because horizontal winds dictate the492

strength of uplift in stationary mountain waves, and are consequently a primary factor modulating493

the effect of orography on 𝑞𝐿 variations.494

e. Controls on daily precipitation variations495

To verify whether the same factors that govern lower-free-tropospheric temperature and moisture499

control rainfall variations, we now regress horizontal wind on daily upstream precipitation in each500

region (Fig. 10; upstream precipitation is defined as an average over the same boxes we previously501
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used to define the rain bands). Enhanced rainfall is associated with some amount of upslope502

flow in all regions, confirming the importance of orographic mechanical forcing in influencing503

precipitation variability there. Deviations from pure upslope flow (especially in Vietnam, Malaysia,504

the Philippines and PNG) are consistent with the wind patterns that accompany 𝑞𝐿 variations (see505

Fig. 9), i.e. down-moisture gradient winds. This confirms the joint control of orographic lifting506

and large-scale moisture advection on orographic precipitation variability in the tropics.507

Color shading in Fig. 10 shows precipitation regressed on this same upwind precipitation index.508

The existence of areas of weak positive association with the upwind rain index that are much509

wider than the orography indicate that orographic rainfall is partially controlled by large-scale,510

“background” precipitation variations. The stronger regression coefficients localized close to511

and preferentially upstream of the orography suggests the existence of an orographic mode of512

precipitation variability in each region. Patterns of positive association extend several hundred513

kilometers upstream of the regions used to define the rainfall index, as expected given the far-514

reaching influence of mechanical forcing upstream of a ridge (NB22).515

5. Spatial distribution of buoyancy around orography516

Strong spatial gradients are an ubiquitous characteristic of orographic rainfall. All regions in519

Fig. 3 exhibit a windward rainfall peak and a leeward rain shadow less than 200 km apart, with520

seasonal-mean precipitation rates varying from more than 15 mm day−1 to less than 5 mm day−1
521

on short distances. The buoyancy framework presented in section 4 naturally applies on short522

(hourly to daily) temporal scales, as buoyancy anomalies are consumed in a few hours (Ahmed523

et al. 2020). Here, we explore its potential to explain precipitation patterns on much longer time524

scales. Specifically, we explore whether seasonal-mean spatial features of orographic precipitation525

follow the spatial distribution of time-averaged buoyancy 𝐵𝐿 .526

The precipitation-𝐵𝐿 relationship was initially introduced as a nonlinear statistical relationship527

holding at short spatial and small temporal scales (Ahmed and Neelin 2018). It is statistical in528

the sense that a single value of 𝐵𝐿 corresponds to a range of precipitation rates—the relationship529

appears when conditionally averaging precipitation. Taking time averages is thus favorable in that530

it eliminates the underlying stochasticity. However, averaging over a nonlinear relationship may531

yield a non-unique mapping between time-mean precipitation 𝑃 and time-mean buoyancy 𝐵𝐿 .532
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Fig. 11. Maps of seasonal-mean plume buoyancy 𝐵𝐿 . The 500 m topography contour is shown in magenta.

White shading represents undefined 𝐵𝐿 values, wherever the surface pressure is lower than 900 hPa.

517

518

For example, it appears from Fig. 5 that the orographic rain band upstream of Myanmar has a533

narrower distribution of 𝐵𝐿 than other regions. This suggests that 𝐵𝐿 values in that region may534

be higher than in other places with comparable rain rates, e.g., upstream of the Western Ghats or535

PNG. Nonetheless, one might still expect a monotonic relationship between 𝐵𝐿 and 𝑃, perhaps536

with variations across regions.537

We compute 𝐵𝐿 from ERA5 temperature and moisture data at 0.25◦ and daily resolution, then538

average temporally over each region’s rainiest season (see Table 1) for 20 years. The resulting539

maps are shown in Fig. 11. We note that the boundary layer top is taken as the 900 hPa level,540

which ignores spatial variations in boundary layer depth. Including these variations (using ERA5541

estimates of boundary layer depth; not shown) does not affect the results presented here. Spatial542

features on these maps are broadly consistent with the maps of mean precipitation in Fig. 3. A543

distinct peak is visible upwind of each orographic barrier, with decreased 𝐵𝐿 values in the lee: this544

confirms that mechanical forcing spatially distributes precipitation in a manner consistent with its545

effect on the temperature and moisture fields. This effect was already noted in Section 4 in the546
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maps of time-averaged𝑇𝐿 and 𝑞𝐿 (Figs. 8 and 9, where upstream cold anomalies were present in all547

regions, and moist anomalies in several regions). 𝐵𝐿 peaks are collocated with rainfall peaks (see548

Fig. 3) in all regions. One small exception is the easternmost 𝐵𝐿 peak in Myanmar, which extends549

farther inland than the observed precipitation maximum. We note that the ERA5 precipitation550

distribution (not shown) follows the 𝐵𝐿 pattern, with higher values than TRMM PR/GPM DPR551

inland. This may indicate that the reanalysis does not accurately represent the underlying 𝐵𝐿552

distribution there.553

Except for the special case of Myanmar, rain shadows are consistent with the time-mean buoy-554

ancy distribution. Reduced values of 𝐵𝐿 , mostly associated with a warmer and/or drier lower-555

troposphere, are visible downstream of the mountain ranges, consistent with the expected effect of556

gravity wave subsidence there. In the Western Ghats and in PNG, 𝐵𝐿 does not drop as sharply as557

precipitation downstream of the rainfall maximum. Once again, ERA5 precipitation (not shown)558

partly reflects this fact, with overestimated rainfall values especially downstream of PNG. This559

could mean that ERA5 underestimates the warm and dry anomalies resulting from mechanically560

forced subsidence there (perhaps because the topography is under-resolved). Alternatively, the561

𝐵𝐿 framework may only partially account for the suppression of precipitation in rain shadows.562

Convection may be affected by higher-order variations in the vertical structures of temperature and563

moisture, or by neglected dynamical effects (e.g., mountain lees are regions of strong wind shear).564

6. A linear model for seasonal-mean tropical orographic precipitation565

Section 5 suggests that the spatial organization of tropical orographic rainfall is adequately566

captured by the time-mean plume buoyancy distribution. However, we have yet to quantify the567

effect of orography on this distribution. Here, we delve further into the physical drivers through568

which orography influences 𝐵𝐿 and sets the strength and location of rainfall peaks and rain shadows.569

We use a simple theory that solves, for any topographic shape, the time-mean temperature and570

moisture anomalies carried by a stationary mountain wave (including convective feedback on the571

moisture anomalies) to estimate the time-mean precipitation distribution. The model describes572

mechanically forced rainfall in tropical regions, and neglects thermal forcing and Earth’s rotation.573

We compare its predictions with observations and with two existing theories for mechanically574

forced orographic rainfall.575
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a. Derivation576

The theory we present closely follows the one developed in NB22, but extends it to two horizontal577

dimensions. We give an outline of the derivation, and refer readers to that work for more details.578

A low-latitude domain with topography ℎ(𝑥, 𝑦) has a constant background wind u0 = (𝑢0, 𝜐0) and579

Brunt-Väisälä frequency 𝑁 . The flow is decomposed as the sum of a basic state, a “dry” mode (that580

carries temperature and moisture perturbations from a stationary mountain wave), and a “moist”581

mode (that consists of a convective response to these perturbations). The dry mode influences582

the moist mode by altering convective heating and moistening, that are parameterized as functions583

of lower-tropospheric temperature and moisture following the 𝐵𝐿 framework, but the moist mode584

does not affect the dry mode. This simplifying assumption allows for analytical tractability, and585

was tested in NB22; idealized simulations showed that the moist mode does reduce the temperature586

perturbations carried by the dry mode, but that this effect is of second-order importance. In this587

section only, temperature and moisture are in energy units (compared to the previous sections, they588

are multiplied by 𝑐𝑝), for consistency with NB22.589

Steady-state thermodynamic and moisture equations for the moist mode read:590

u0 · ∇𝑇𝑚 +𝜔𝑚
𝑑𝑠0
𝑑𝑝

=𝑄𝑐 −𝑅, (7a)

u0 · ∇𝑞𝑚 +𝜔𝑚
𝑑𝑞0
𝑑𝑝

=𝑄𝑞 +𝐸, (7b)

where 𝑠0(𝑝) and 𝑞0(𝑝) are the background dry static energy profile and moisture profile (in energy591

units). 𝑄𝑐 and 𝑄𝑞 denote convective heating and moistening, while 𝑅 and 𝐸 are radiative cooling592

and surface evaporation rates. 𝜔 is the pressure velocity, and the subscript 𝑚 is used for moist593

mode quantities (we will similarly use a subscript 𝑑 for dry mode properties), so 𝑇𝑚 and 𝑞𝑚 are,594

respectively, the moist mode temperature and moisture perturbations.595

We use the weak temperature gradient approximation for the moist mode, which implies that596

𝑇𝑚 is horizontally uniform. This allows us to set 𝑇𝑚 = 0: one can add any horizontally uniform597

nonzero 𝑇𝑚 (𝑝) to the reference profile 𝑇0(𝑝), hence resulting in 𝑇𝑚 = 0. Truncating the vertical598

velocity profile as 𝜔𝑚 (𝑥, 𝑦, 𝑝) = 𝜔1(𝑥, 𝑦)Ω(𝑝), where Ω is a fixed vertical profile, and vertically599
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averaging over the depth of the troposphere yields600

−𝜔1𝑀𝑠 = ⟨𝑄𝑐⟩ − ⟨𝑅⟩, (8a)

u0 · ∇⟨𝑞𝑚⟩ +𝜔1𝑀𝑞 = ⟨𝑄𝑞⟩ + ⟨𝐸⟩, (8b)

where 𝑀𝑠 = −⟨Ω𝜕𝑠0/𝜕𝑝⟩, 𝑀𝑞 = ⟨Ω𝜕𝑞0/𝜕𝑝⟩, and ⟨·⟩ denotes a vertical average in pressure coor-601

dinates. 𝑀 = 𝑀𝑠 −𝑀𝑞 is known as the gross moist stability, and 𝑀/𝑀𝑠 as the normalized gross602

moist stability (NGMS, Raymond et al. 2009).603

Following Ahmed et al. (2020), the precipitation-𝐵𝐿 relationship is linearized (and boundary-604

layer \𝑒 is assumed constant), yielding605

⟨𝑄𝑐⟩ =
𝑞′
𝐿

𝜏𝑞
−
𝑇 ′
𝐿

𝜏𝑇
=
𝑞𝑑𝐿 + 𝑞𝑚𝐿

𝜏𝑞
− 𝑇𝑑𝐿
𝜏𝑇
, (9)

where 𝑞𝑑𝐿 and 𝑞𝑚𝐿 are lower-free-tropospheric moisture perturbations carried by the dry and606

moist modes, 𝑇𝑑𝐿 is the dry mode temperature perturbation (recall 𝑇𝑚 = 0), and the convective607

time scales 𝜏𝑇 and 𝜏𝑞 are constants appearing from the linearization. For seasonal-mean rainfall,608

these are taken as 𝜏𝑇 = 7.5 hr and 𝜏𝑞 = 27.5 hr, a factor 2.5 higher than their values when used to609

represent precipitation at the hourly scale. Because the vertical structure of moisture perturbations610

is horizontally uniform, 𝑞𝑚𝐿 and ⟨𝑞𝑚⟩ are proportional to each other; we therefore define an611

adjustment time scale for vertically averaged moisture, 𝜏𝑞 = 0.6𝜏𝑞 such that 𝑞𝑚𝐿/𝜏𝑞 = ⟨𝑞𝑚⟩/𝜏𝑞.612

We now use conservation of energy to relate convective heating, moistening, and precipitation613

by614

⟨𝑄𝑐⟩ = −⟨𝑄𝑞⟩ =
𝜌𝑤𝐿𝑣𝑔

𝑝𝑇
𝑃, (10)

where 𝑝𝑇 = 800 hPa is the depth of the troposphere and 𝜌𝑤 = 1000 kg m−3 is the density of water.615

The first factor on the right-hand-side converts a precipitation rate (in m s−1 or mm day−1) into a616

convective heating rate (in J kg−1s−1). We henceforth define 𝛽 = 𝑝𝑇/(𝜌𝑤𝐿𝑣𝑔). Using this definition617

and combining (8a), (8b), (9), and (10), we derive an equation for 𝑃:618

u0 · ∇𝑃+ NGMS
𝜏𝑞

(𝑃−𝑃0) = 𝛽u0 · ∇
(
𝑞𝑑𝐿

𝜏𝑞
− 𝑇𝑑𝐿
𝜏𝑇

)
, (11)
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Fig. 12. Maps of mean precipitation in the Western Ghats. (a) Observations (TRMM PR and GPM DPR), (b)

Nicolas and Boos (2022) theory, (c) Smith and Barstad (2004) theory, (d) upslope model (IVT · ∇ℎ/𝐻sat).

619

620

where 𝑃0 = 𝛽
𝑀𝑠⟨𝐸⟩ −𝑀𝑞 ⟨𝑅⟩

𝑀
is a background rain rate. The right-hand-side of equation (11)621

represents a forcing of convection by the dry mode. The second term on the left-hand-side622

represents convective relaxation: precipitation forced by the cool and moist perturbations of623

the dry mode dries the lower-free-troposphere, which in turn relaxes rainfall back towards the624

background rate 𝑃0. The reverse process happens when precipitation is suppressed by warm625

and dry perturbations. This process happens on a length scale 𝐿𝑞 = 𝜏𝑞 |u0 |/NGMS. We note626

that this framework is suitable for various vertical structures of convection, and that changes in627

the vertical structure Ω(𝑝) only affect the solutions through the NGMS. Remarkably, solutions628

can be obtained with negative NGMS (which typically results from bottom-heavy vertical motion629

profiles, e.g., Back and Bretherton 2006). In these cases, convection amplifies (rather than damps)630

the precipitation perturbation forced by the dry mode.631

Solving for 𝑇𝑑𝐿 and 𝑞𝑑𝐿 using mountain wave theory allows us to map a given topographic shape632

to the associated precipitation distribution using a Fourier transform. In the dry mode, moisture is633

conserved and there are no diabatic processes. Hence, horizontal advection terms are balanced by634

vertical advection:635

u0 · ∇
(
𝑞𝑑𝐿

𝜏𝑞
− 𝑇𝑑𝐿
𝜏𝑇

)
= 𝑤𝑑𝐿

(
1
𝜏𝑇

𝑑𝑠0
𝑑𝑧

− 1
𝜏𝑞

𝑑𝑞0
𝑑𝑧

)
, (12)
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where 𝑤𝑑𝐿 is the vertical velocity of the dry mode (we use height coordinates in the spirit of linear636

mountain wave theory). We define637

𝜒 = 𝛽

(
1
𝜏𝑇

𝑑𝑠0
𝑑𝑧

− 1
𝜏𝑞

𝑑𝑞0
𝑑𝑧

)
(13)

and substitute (12) into (11), which becomes (defining 𝑃′ = 𝑃−𝑃0)638

u0 · ∇𝑃′+ 𝑁𝐺𝑀𝑆
𝜏𝑞

𝑃′ = 𝜒𝑤𝑑𝐿 . (14)

Here, 𝑤𝑑𝐿 is given by linear mountain wave theory, in two horizontal dimensions under the639

Boussinesq approximation, by (Smith 1979):640

�̂�𝑑 (𝑘𝑥 , 𝑘𝑦, 𝑧) = 𝑖𝜎ℎ̂(𝑘𝑥 , 𝑘𝑦)𝑒𝑖𝑚(𝑘𝑥 ,𝑘𝑦)𝑧 (15)

where 𝑘𝑥 and 𝑘𝑦 are the horizontal wavenumbers, hats denote Fourier transforms, 𝜎 = 𝑘𝑥𝑢0+ 𝑘𝑦𝜐0,641

and 𝑧 is the vertical coordinate. Defining 𝐾2 = 𝑘2
𝑥 + 𝑘2

𝑦, the vertical wavenumber 𝑚(𝑘𝑥 , 𝑘𝑦) is642

𝑚 =


sgn(𝜎)

√︂
𝐾2

(
𝑁2

𝜎2 −1
)

if 𝜎2 < 𝑁2

𝑖

√︂
𝐾2

(
1− 𝑁2

𝜎2

)
if 𝜎2 > 𝑁2

. (16)

Fourier-transforming (14) and using (15) gives a closed expression for the Fourier-transformed643

precipitation anomaly �̂�′:644

�̂�′(𝑘𝑥 , 𝑘𝑦) =
𝑖𝜎𝜒

𝑖𝜎 + 𝑁𝐺𝑀𝑆
𝜏𝑞

ℎ̂(𝑘𝑥 , 𝑘𝑦)
[
𝑒𝑖𝑚(𝑘𝑥 ,𝑘𝑦)𝑧

]
𝐿
. (17)

The main controlling parameters are topography ℎ(𝑥), background wind 𝑢0, stratification 𝑁 and645

a background moisture lapse rate. We note that in this model, the lower troposphere is defined646

between 1 km and 3 km above sea level. With this choice, mountain waves that have small647

vertical wavelengths may have positive temperature anomalies and negative moisture anomalies in648

the lower troposphere upstream of topography, and the model predicts small or negative rainfall649

enhancement in these cases. For 𝑁 ≃ 0.01 s−1, this happens when 𝑈 < 8 m s−1; the model is not650
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recommended for use below this wind speed without some attention to redefining the vertical span651

of the lower troposphere, as well as taking thermal forcing into account. We now apply this model652

to the real-world tropics.653

b. Comparing observed and modeled rainfall distributions654

The ingredients comprising the above theory (weak temperature gradient approximation,661

quasiequilibrium precipitation closure) make it especially suited to tropical regions. SB04 de-662

veloped a model of mechanically forced orographic rainfall for convectively stable flows that has663

been used to represent midlatitude orographic precipitation. While SB04 did not intend their model664

for use in tropical regions, it is arguably the most widely used theoretical model of orographic665

precipitation, and as such provides a point of comparison with the present theory. Their model666

assumes that condensation results from ascent in a saturated atmosphere (see (1)). Unlike the667

upslope model, however, vertical motion is computed using linear mountain wave theory, and668

the effects of finite hydrometeor growth times and downwind advection are parameterized. The669

fundamental difference between the models of SB04 and NB22 is the mechanism linking mountain670

waves to precipitation: in the former, rain is associated with the ascent rate 𝑤, while in the latter,671

it is associated with vertical displacement of the lower-free-troposphere from a background state.672

This results in shorter length scales for the upstream enhancement of rainfall and rain shadows673

in SB04’s model. This can be understood qualitatively with the idealized topographic profile674

used in the Appendix, which decays as ℎ(𝑥) ∝ 𝑥−2 upstream of the mountain; while the vertical675

displacement should scale approximately like ℎ(𝑥), the vertical motion will scale as 𝑑ℎ/𝑑𝑥 and676

thus have a faster decay rate of 𝑥−3.677

We compare observed and modeled seasonal-mean rainfall maps4 in the Western Ghats in Fig.678

12. Both the SB04 and NB22 models use a uniform static stability; we choose 𝑁 = 0.01 s−1, which679

corresponds to a lapse rate of 6.5 K km−1, close to the free-tropospheric lapse rate in the Ghats.680

Because tropical lapse rates are steeper than moist adiabats, we do not use SB04’s “moist static681

stability” (which is negative in all regions) to calculate stationary mountain waves in the SB04682

model. SB04 further require a moist adiabatic lapse rate, taken as Γ𝑚 = 4.3 K km−1 (corresponding683

to a lower-tropospheric average for a surface temperature of 300 K), and hydrometeor growth and684

4For both models, the domain shown in Fig. 12 is padded to a square domain of side length 7500 km, with topography smoothed down to zero
elevation 100 km outside of the main domain.
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Fig. 13. Cross-sections of observed and modeled precipitation in all regions, along the direction of the

seasonal-mean wind. The insets show the orientation and width of the areas used to define cross sections (the

background shows mean observed precipitation from TRMM PR and GPM DPR, as in Fig. 3). The gray shadings

represent topography. The dark blue lines are observed mean precipitation during each region’s rainiest season.

Other lines show precipitation from the Nicolas and Boos (2022) theory (black), the Smith and Barstad (2004)

theory (solid green), and the upslope model (dashed green).
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657
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660

fallout times, both taken as 1000 s (as suggested in SB04). To account for non-precipitating times,685

the SB04 perturbation precipitation rates are divided by the factor 2.5, chosen in NB22 to fit peak686

rain rates from SB04 to convection-permitting simulations. For the NB22 model, we choose a687

lower-tropospheric moisture lapse rate of −8 K km−1 and NGMS= 0.2, representative of all the688

regions studied herein. Finally, the background wind and precipitation rate are given in Table 4,689

chosen to match upstream values from ERA5 and TRMM PR/GPM DPR. Both theories (Fig. 12,690

panels b and c) produce an upstream precipitation peak that is commensurate with observations691

(around 20 mm day−1). As explained above, precipitation enhancement happens much closer to692

the ridge in the SB04 model, which fails to account for high precipitation rates over the Arabian693

sea upstream of the Western Ghats. It also predicts a second rainfall peak downstream, by the694
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eastern coast of India, associated with vertical motion predicted by linear mountain wave theory695

there. This is unlike the NB22 model which features an extensive rain shadow. Although central696

and northeastern India do receive precipitation during summer (panel a), this is commonly thought697

to arise from the dynamics of synoptic-scale disturbances such as monsoon depressions (Sikka698

1977) rather than mountain wave ascent downstream of the Indian topography.699

For reference, Fig. 12d shows precipitation from the upslope model (eq. 2). We convert the700

condensation rate into a precipitation rate using an efficiency factor 𝜖 = 0.25, chosen to match peak701

precipitation rates in the Ghats. We use 0.25◦× 0.25◦ topography, as higher resolutions lead to702

unrealistic small-scale features in this model. Because it only predicts precipitation above mountain703

slopes, it does not account for any upstream rainfall enhancement. By design, this model predicts704

peak rainfall to occur on the steepest upstream slopes, and does capture a large part of the observed705

peak directly above the windward Ghats.706

We extend this analysis to all regions, and show cross-sectional averages of the observed and707

modeled mean precipitation rates in Fig. 13. The insets show the direction and width of the cross708

sections, which were chosen normal to topography and following the prevailing wind direction.709

Background wind speeds and precipitation rates are listed in Table 4. With the fixed precipitation710

efficiency 𝜖 = 0.25 that produced a match to the peak precipitation magnitude in the Western711

Ghats, the upslope model underestimates peak precipitation rates in nearly all other regions. Thus,712

in addition to missing the upstream enhancement of precipitation, this model requires region-713

specific tuning to yield accurate peak rainfall rates. The SB04 and NB22 models produce similar714

peak rain rates in all regions, differing primarily in the upstream extent of the orographic rainfall715

enhancement and in the leeside precipitation rates. The NB22 model accurately predicts the rainfall716

enhancement upstream of certain regions (especially the Western Ghats and Vietnam), while the717

SB04 model predicts rainfall to pick up much closer to the topography, at odds with observations.718

The description of orographic rainfall as the result of forced temperature and moisture perturbations719

in a lower-tropospheric quasiequilibrium state is thus consistent with observations there. In other720

regions (most notably the Philippines and PNG), both models greatly underestimate precipitation721

rates compared to observations. In the NB22 model, this failure results from an underestimation722

of the moisture anomaly 𝑞′
𝐿

(not shown). We speculate that positive 𝑞𝐿 perturbations are not only723

the result of orographic lifting in these regions, and that climatological mean large-scale ascent,724
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Table 4. Parameters used in the precipitation models of Smith and Barstad (2004) and Nicolas and Boos (2022)

Region name 𝑢0 (m s−1)- 𝜐0 (m s−1) 𝑃0 (mm day−1)

Western Ghats 10 1 3

Myanmar 8 8 6

Vietnam -7 -5 4

Malaysia -7 -5 10

Philippines -8.5 -3 4

PNG -7.5 5.5 3

forced by non-orographic factors, plays a key role in producing the observed rainfall patterns. The725

fact that PNG is located within the SPCZ is consistent with this hypothesis.726

Differences between observed and modeled precipitation rates are also apparent downstream727

of the mountain ranges. The NB22 model seems to strongly overestimate the drying effect of728

orography there. The main reason for this flaw is that the model assumes a time-independent729

background wind, which leads the lee of mountains to be persistently warm and dry. In reality,730

some days exhibit reversed flow or have a stronger along-slope component, creating more favorable731

conditions for convection in the lee. Additionally, synoptic disturbances (such as monsoon de-732

pressions downstream of the Indian subcontinent) may occasionally propagate into these regions,733

contributing to small positive seasonal-average precipitation there. As explained above in the case734

of the Western Ghats, the SB04 model predicts higher leeside precipitation rates, because linear735

mountain wave solutions produce ascent there. This leads to localized downstream precipitation736

peaks that are not seen in observations.737

7. Discussion and conclusions738

Here we investigated the spatial and temporal distribution of mechanically forced orographic739

rainfall in six tropical regions. We showed that a buoyancy proxy, evaluated from reanalysis data,740

captures many aspects of both daily variations and the seasonal-mean spatial distribution of rainfall741

in all regions. In this framework, the interaction of orography with the background wind creates742

temperature and moisture anomalies in the lower troposphere, affecting the buoyancy of convective743

plumes and thereby controlling precipitation.744

This work confirms the important role of lower-free-tropospheric moisture (𝑞𝐿) in controlling745

temporal variations in orographic convection. In the absence of background horizontal moisture746
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gradients, 𝑞𝐿 variations would be fully controlled by orographic uplift, hence primarily by the747

cross-slope wind speed. The presence of large-scale 𝑞𝐿 gradients leads alternate directions of748

wind anomalies to favor rainfall in some regions, namely down-moisture-gradient winds. These749

results indicate that mechanical forcing only exerts a partial control on rainfall variations in the750

regions studied. Together, these findings establish a new view of tropical orographic precipitation751

being enhanced by moistening of the lower troposphere due to both upslope flow and large-scale752

horizontal advection.753

Despite the nonlinear relationship between plume buoyancy 𝐵𝐿 and precipitation, time-averaged754

𝐵𝐿 captures many spatial features of observed seasonal-mean precipitation maps. Discrepancies755

appear in the rain shadows, where 𝐵𝐿 (as estimated from a reanalysis) overestimates precipitation.756

This points to a possible limitation of the present framework, in which convective dynamics are757

assumed identical over oceans and in mountains, with mountains only affecting plume buoyancy.758

Nevertheless, our goal here is to provide a first-order understanding of the mechanisms govern-759

ing tropical orographic precipitation. We recognize that this approach neglects the influence of760

some aspects of orographic dynamics, such as strong wind shears and gravity wave breaking, on761

convection.762

We present a linear theory that predicts the time-mean rainfall distribution for arbitrary 2D763

topography and uniform wind. It quantifies the lower-tropospheric temperature and moisture per-764

turbations caused by stationary mountain waves, and takes into account the feedback of convection765

on the moisture distribution. The theory accurately predicts upstream rainfall in some regions,766

especially the Western Ghats and Vietnam. In other regions (mainly the Philippines and PNG),767

it yields weaker peak rainfall than observations. It is likely that mechanical forcing alone cannot768

explain the strong rain bands observed there. The presence of climatological-mean ascent, due to769

non-orographic factors (such as the SPCZ in PNG), plays a key role in setting the lower-tropospheric770

moisture gradients, hence the rainfall patterns, in these regions.771

The theoretical model presented herein only describes mechanically forced rainfall in tropical772

regions. As such, it is expected to work with small nondimensional mountain heights and suf-773

ficiently strong winds (we recommend its use for wind speeds of at least 8 m s−1). The model774

does not describe thermal forcing (expected to dominate in weak horizontal winds and/or large775

nondimensional mountain heights), nor is it suitable for moist convectively stable ascent cases,776
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more common in midlatitude winter. Our use of the weak temperature gradient approximation777

for the moist mode, and neglect of the Coriolis parameter, may make it most appropriate for the778

tropics.779

One other limitation of this study is that it does not investigate the vertical structure of convection,780

which past work has shown varies in tropical orographic regions (Kumar and Bhat 2017; Shige781

and Kummerow 2016). However, we have demonstrated that the buoyancy framework accurately782

characterizes precipitation in the six regions studied, irrespective of the mean depth of convection.783

Furthermore, the theoretical model assumes a fixed but arbitrary vertical structure of upward784

motion, and is thus applicable to a wide range of tropical regions (perhaps with modification of785

the coefficients that depend on the vertical structure of ascent). However, the buoyancy framework786

might not apply in trade wind regions, which are characterized by very shallow convection beneath787

an inversion layer (for a study of orographic precipitation in the trades, see Kirshbaum and Smith788

2009).789

This work suggests that two ingredients are needed to accurately represent tropical orographic790

convection: free-tropospheric temperature and moisture anomalies generated by flow over terrain,791

and the dependence of convection on those thermodynamic perturbations. This implies that792

a coarse-resolution model with a good convective parameterization may perform well around793

orography, as long as the magnitude of lower-tropospheric vertical displacement over the terrain794

is captured. We hope that future work will investigate the representation of tropical orographic795

rainfall in climate models under this lens.796
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APPENDIX805

Lower-tropospheric temperature and moisture perturbations forced by an idealized ridge806

We consider an infinite two-dimensional (𝑥-𝑧) domain whose surface height is807

ℎ(𝑥) = ℎ𝑚
𝑙20

𝑥2 + 𝑙20
, (A1)

where 𝑙0 is the mountain half-width and ℎ𝑚 is the maximum height. This topographic profile,808

commonly known as a Witch-of-Agnesi, has a convenient Fourier transform, which renders the809

treatment of mountain wave solutions analytically tractable. The background horizontal wind speed810

𝑈 and static stability 𝑁 are supposed uniform. We now estimate mechanically forced temperature811

perturbations using linear mountain wave theory, which is approximately valid under the assumption812

of small nondimensional mountain height 𝑁ℎ𝑚/𝑈. Queney (1948) gives an analytical solution for813

Z (𝑥, 𝑧), the vertical displacement at 𝑥 of a streamline originating upstream at 𝑧:814

Z (𝑥, 𝑧) = ℎ𝑚
cos(𝑁𝑧/𝑈)𝑙20 − sin(𝑁𝑧/𝑈)𝑙0𝑥

𝑥2 + 𝑙20
. (A2)

This expression is valid when 𝑙0𝑁/𝑈 ≫ 1, which is largely satisfied with a half-width 𝑙0 ≃ 100815

km, 𝑈 ≃ 10 m s−1, and 𝑁 ≃ 0.01 s−1. With uniform static stability, and in the absence of diabatic816

processes, a parcel lifted by Z experiences a cooling of magnitude Z 𝑑𝑠0/𝑑𝑧. Thus, the lower-free-817
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tropospheric temperature perturbation is818

𝑇 ′
𝐿 (𝑥) = −ℎ𝑚

𝑑𝑠0
𝑑𝑧

𝛼𝑐𝑙
2
0 −𝛼𝑠𝑙0𝑥
𝑥2 + 𝑙20

, (A3)

where 𝛼𝑐 = [cos(𝑁𝑧/𝑈)]𝐿 , 𝛼𝑠 = [sin(𝑁𝑧/𝑈)]𝐿 , and [·]𝐿 denotes a lower-tropospheric average.819

𝑠0(𝑧) is the background dry static energy profile profile (divided by 𝑐𝑝). Minimizing (A3) gives820

the peak lower-tropospheric temperature perturbation:821

𝑇 ′
𝐿,max = −ℎ𝑚

𝑑𝑠0
𝑑𝑧

(√︃
𝛼2
𝑐 +𝛼2

𝑠 +𝛼𝑐
)
, (A4)

Evaluating 𝜕𝑇 ′
𝐿,max/𝜕𝑈 with a 1-km high mountain and 𝑁 = 0.01 s−1 gives (5).822

The peak moisture perturbation is given by the same expression as (A4), replacing 𝑑𝑠0/𝑑𝑧 with823

𝑑𝑞0/𝑑𝑧 (where 𝑞0(𝑧) is a background moisture profile). Using a lower-free-tropospheric moisture824

lapse rate representative of our regions (8 K km−1), we obtain (6).825
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